-« -
'TE" ', N =~ -
3 1 ;.‘.;‘.5"3
ﬂﬁﬁgj JL L\,’.VY

Ada 9X Project Report

AD-A222 159

Ada 9X Project
Revision Request Report

Supplement 1

January 1990

Office of the Under Secretary of Cefense for Acquisition

Washington, D. C. 20301

Approved for public release; distribution is unlimited.

90 05 11 0?4

Supplement I

REPORT DOCUMENTATION PAGE

%ﬁ 0704188

mwmvumumh“bwtmummnm-

auolons, searching
mnmum [e
:Gﬂo MM“ m‘ frp-irig ::‘-' m'"”o:":'fmm{m?u i
1. AGENCY USE ONLY (Leave Blank) zmwt , uzmmwmmsmm
January 1990
- 25 Jul to 31 Oct 1989

4. TITLE AND SUBTITLE 8. FUNDING NOMBERS

Ada 9X Project Revision Request Repornt

Supplement 1 C = MDA-S03-87D-0056
. ALUTHOR(S)

Compiled by HT Research Institute

7. PERFORMING ORGANIZATION NAME(S) ANO ADORE SS(ES)

IIT Research Institute
4600 Forbes Boulevard
Lanham, MD 20706

8. PERFORMING, CRGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGEK:Y NARE(S) A’DAMRESS(ES)

Washington, DC 20301-3080

‘Ada Joint Program Office Ada 9X Project Office
1211 South Fern St., 3E113 AF Armament Lab/FXG
The Pentagon Eglin AFB, Florida 32542-5434

10. SPONSORINGMONITORING AGENCY
REPORT NUMBER

" SUPPLEMENTARY NOTES

This report is a supplement to the August 1989 report with the same title.

128, DISTRIBUTION/AVAILABILITY STATEMENT

. Approved for public release; distribution Is unlimited.

120. DISTRIBUTION COCE

13, ABSTRACT (Maximumn 200 words)

Project Revision Request Report, August 1989.

This document contains the revision requests received by the Ada 9X Project Ofice betwean 25 July
and 31 October 1989 for consideration under the current review of ANS/MIL-STD-1815A. Revision
"requests received between 20 October and 24 July 1989 are published in an initial report, Ada 89X

1 SR FCTTFAMS

Ada 9X Project, Revision Requests, ANSI/MIL-STD-1815A, Ada Joint Program Ofiice, Lexical Elements, Doclaration and Typas,

15. NUMBER OF PAGES

Names and Expressions, Statemants, Subprograms, Packages, Visibllty Rules, Tasks, Program Structure and Compliation lssues,| '8, PRICE COOE

Exceptions, Generio Units, Representation Clauses and Implementation-Dependent Features, Input-Output

17. SECU TION 18, BECURITY CLASSIFICATION 10, SECURDY CLASSFEXTICH 20. LIMITATION OF ABSTRACT
OF REFPORT OF THIS PAGE OF ABSTRACT .
|__UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500

Swnoara Form 298, Rw a~
Praaaong by ANS! 3,
00

PREFACE

This document contains the revision requests received by the Ada 9X Project Office between 25 July
and 31 October 1989 for consideration under the current review of ANSI/MIL-STD-1815A. Revision
requests received between 20 October 1988 and 24 July 1989 are published in an initial report, Ada 9X
Project: Revision Request Report, August 1989.

To obtain copies of this report, or other Ada 9X Project reports, contact the Ada Information
Clearinghouse at 703-685-1477. The revision requests, additional information on their current status, and
status reports of the Ada 9X Project’s achievements, are available on the Ada 9X electronic bulletin board
at 1-800-Ada9X25 or 1-301-459-8939, on the AJPO host on Internet, or on Eurokom.

This document was prepared by IIT Research Institute (IITRI) under sponsorship of the Ada 9X
Project Office. The ITTRI Program Manager is Mary Armstrong. IITRI staff that contributed to this report
are Susan Carlson, Trisha Guethlein, and Hank Greene.

The Ada 9X Project Office is directed by Chris Anderson at the Air Force Armament Laboratcry,
Eglin Air Force Base, Florida 32542-5434. The Ada 9X Project is sponsored by the Ada Joint Program
Office.

CCE) For
NTIE CRAgl
Oivl Taps 0
U a0 ed i)
Jui [G
N R]
——————
B8y
Cot b1 T
= R
Aoyt fides
Gist i ~ e
A-l .
1 !

iii
Supplement I

iv
Supplement 1

INTRODUCTION

BACKGROUND

“ The Ada 9X Project was initiated in October 1988 to revise ANSI/MIL-STD-1815A. The Ada9X
Project Office was established at the Air Force Armament Laboratory under the direction of Chris
Anderson. The overall goal of the Ada 9X Project is to revise ANSI/MIL-STD-1815A to reflect current
essential requirements with minimum negative impact and maximum positive impact to the Ada community.
The Ada 9X process is a revision and not a redesign of the language and should be viewed as a natural

part of the maturauoigr_c_)’ce’ss_/

e

(Reqmremems for the revision are based on input from the Ada community in the form of special
studies, worksl}ops public meetings, Ada Language Issues, and revision requests. The Ada 9X Project Office
conducted an "open call" for revision requests from October 1988 to October 1989. Individuals and groups
were encouraged to submit requests for a particular revision of the language using the format shown in
Appendix A. Revision requests are currently being reviewed by the Ada 9X Project Requirements Team.
The status of revision requests will be tracked throughout the Ada 9X revision process. Revision requests
may be viewed on the Ada 9X Project electronic bulletin board at 1-800-Ada9X25 or 1-301-459-8939, on
the AJPO host on Internet, or on Eurokom N PR

/(;GANIZATION OF THIS DOCUMENT

N

"~ This document contains Revision Requests 0151 through 0837. Requests are organized according to
relevant sections in the Language Reference Manual, ANSI/MIL-STD-1815A. - If a request is relevant to
more than one section, it will physically appear in the first section de51gnated by the author and appear
by reference in other sections. ' Indices are provided to support reference by key technical terms, revision
request number, revision request title, submitter, and organization. - Instructions for incorporating this
supplement into the Ada 9X Project Revision Request Report, August 1989 are given on page vi. Changes
to the August 1989 report are provided as Attachment L

v
Supplement I

INSTRUCTIONS FOR INCORPORATING THIS SUPPLEMENT REPORT INTO
ADA9X PROJECT REVISION REQUEST REPORT, AUGUST 1989

REMOVE

i to vii

1-6

2-6 10 2-8
3-46 to 348
4-26

5-10

6-22 to 6-23
7-14

8-10

9-56

10-20

11-16 to 11-18
12-4 to 12-6
13-28 to 13-29

14-8

16-18

I-1 two I-30

vi
Supplement 1

INSERT ‘

i 10 viii
1-6 10 1-26

26 10 2-33
3-46 to 3-269
426 10 4-133
5-10 to 5-54
6-22 10 6-118
7-14 to 7-77
810 to 8-64
9-56 to 9-161
10-20 to 10-79
11-16 to 11-55
12-4 10 12-67
13-28 to 13-95
14-8 10 14-54
15-12 to 15-38
16-18 to 16-133
17-1 to 17-150

I-1 to I-124

TABLE OF CONTENTS

1. INTRODUCTION 1-1
2 LEXICAL ELEMENTS 2-1
3. DECLARATION AND TYPES 3-1
4. NAMES AND EXPRESSIONS 4-1
5. STATEMENTS 5-1
6. SUBPROGRAMS 6-1
2. PACKAGES 7-1
8. VISIBILITY RULES 8-1
9. TASKS 9.1
10. PROGRAM STRUCTURE AND COMPILATION ISSUES 10-1
11. EXCEPTIONS 11-1
12 GENERIC UNITS 12-1
13. REPRESENTATION CLAUSES AND IMPLEMENTATION-DEPENDENT 13-1
FEATURES
14. INPUT-OUTPUT 14-1
15. REVISION REQUEST THAT REFERENCE AN ANSIMIL-STD-1815A 15-1

ANNEX OR APPENDIX

16. REVISION REQUESTS THAT DO NOT REFERENCE ANSI/MIL-STD-1815A OR
REFERENCE THE ENTIRE STANDARD 16-1

17. REVISION REQUESTS THAT WERE SUBMITTED AS STUDY COMMENTARIES 17-1

APPENDIX

A SAMPLE REVISION REQUEST FORM » A-1
INDICES

KEY TECHNICAL TERMS I-3

REVISION REQUEST BY NUMBER [-27
REVISION REQUEST BY TITLE [-65

vii
Supplement I

REVISION REQUEST BY SUBMITTER [-102

REVISION REQUEST BY ORGANIZATION I-116

viii
Supplement 1

ADA 9X REVISION REQUESTS
THAT REFERENCE
ANSI/MIL-STD-1815A

SECTION 1. INTRODUCTION

1-1
Supplement 1

Ada 9X Revision Request 0066

while not being erroneous. Hence an implementation could still use either mechanism, but the semantics
would be either copy or reference (for any specific call). The freedom given by the current language is far
more than implementors require. For instance, as it stands, an implementation could choose the mechanism
dynamically, even if the subprogram was compiled in-line.

IMPORTANCE: IMPORTANT
But ESSENTIAL for safety-critical software.

CURRENT WORKAROUNDS:

In the long-term, program analysis tools could make some impact on the problem. No effort is known by
the author to detect erroneous programs for the full language. Hence there are not effective workarounds
known.

POSSIBLE SOLUTIONS:

It is felt that a significant improvement over the current position could be attained by requiring
implementations to define critical properties related to this area. For instance, the implementation could
be required to define the parameter mechanism used, or define the order of elaboration of library units.

ISO WGS9 be asked to study the implications of erroneous execution and incorrect order dependence
upon the effective use of Ada.

ISO WG9 be asked to include in its agreed work item on the uniformity of implementations to
prepare proposals for Ada 9X to reduce the impact of erroneous programs and those with incorrect
order dependence.

1-6
Supplement I

Ada 9X Revision Requests 0239

TRUE TYPE RENAMING .
DATE: August 2, 1989
NAME: James W. McKelvey

ADDRESS: R & D Associates
P.O. Box 5158
Pasadena, CA 91107

TELEPHONE: (818) 397-7246
ANSI/MIL-STD-1815A REFERENCE: 1, 8.5(9), 8.5(16), 2, 6.4.1(3), 6.3.1(3)
PROBLEM:

Renaming of types using the subtype declaration method (8.5, 16) is not a true renaming. There are at least
two problem areas:

1. When "renaming” an enumerated .ype using the subtype declaration method, the enumeration literals
are not automatically renamed as well. While these can be renamed as functions, the result requires
far too much effort than is reasonable. Furthermore, the renamed functions are not equivalent to
the original literals in that they may not be used in CASE statements.
2. A "renamed” type is not acceptable in an actual parameter type conversion because the semantics .

require the strong condition of conformance ((6.3.1, 3), the type is required, a subtype of it will not
do). A true renaming would eliminate this surprising limitation.

IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS:

1. Enumeration literals may be renamed as functions. Alternatively, constants of the "renamed”
subtype may be declared and assigned values from the original type. The latter solution is required
when the literals are to be used in CASE statements.

2. Actual parameter type conversions cannot use "renamed” types; the original type must be used. This
usually requires expanded names, the avoidance of which motivated the "renaming” in the first place.

POSSIBLE SOLUTIONS:
Allow "renames” t0 be used with subtypes. A statement like:
subtype X_Type renames The_Package.X_Type;

would make a "new name" for the The_Package.X_Type, and import its enumeration literals, if any. This
new name could substitute for The_Package.X_Type in any context.

A statement like: .

1.7
Supplement I

e

Ada 9X Revision Requests 0239

. type X_Type renames The_tackage.X_Type;

would remain illegal.

1-8
Supplement 1

Ada 9X Revision Request 0681

ADA LINE OF CODE (ALOC) STANDARD
DATE: October 12, 1989
NAME: Craig Cowden

ADDRESS: Naval Security Group Detachment
Pensacola, Florida 32511

TELEPHONE: (904) 452-6399

ANSI/MIL-STD-1815A REFERENCE: 1

PROBLEM:

Many software engineering principles and management decisions are based on the vague concept of a line
of Code (LOC). There currently is a proliferation of methods within the Ada community to measure the
size of Ada projects. A few examples of the definition of a LOC include:

- Lines (A simple count of carriage returns.)

- Statements (Lines minus comment lines.)

- Source Instructions (A count of terminating semicolons.)

- Delivered Source Instructions (Lines containing actual code.)

The lack of a common standard definition makes function such as life-cycle support, development cost
estimation, and product evaluation more difficult.

IMPORTANCE: ADMINISTRATIVE
CURRENT WORKAROUNDS:

When evaluating Ada software, an organization can normalize the LOC size to some set standard using a
coefficient. This assumes:

- The method of measurement is known.
- There is enough statistical data to correlate the measurement method with the organization standard.
POSSIBLE SOLUTIONS:

Include a precise definition of an "Ada Lines of Code" in ANSI/MIL-STD-1815A (The Ada language
Reference Manual). For example, Section 1.7 could be added to Chagpter 1 to read:

1.7 Ada Source Line of Code (ASLOC)
The language defines the total number of lines in an Ada program as the Ada Lines of Code (ALOC).

1-9
Supplement 1

Ada 9X Revision Request 0681

This measure is a simple count of end of line characters and includes code lines, comment lines and blank
lines.

An Ada Source Line of Code (ASLOC) is defined as a simple or compound statement, an exception
handler, a data declaration, or an Ada component declaration such as a package, task, generic, or
subprogram. This measure can be computed by counting terminating semicolons (*;").

1-10
Supplement I

Ada 9X Revision Request 0314

DIAGNOSIS OF INCORRECT SYNTAX OR SEMANTICS
DATE: September 13, 1989
NAME: Seymour Jerome Metz
DISCLAIMER:
The views expressed in this request are those of the author, and do not necessarily reflect those of Logicon.

ADDRESS: Home: 4963 Oriskany Drive
Annandale, Virginia 22003

Office: Logicon, Inc.
2100 Washington Boulevard
Arlington, Virginia 22204-5704

TELEPHONE: Home: (703) 256-4764
Office: (703) 486-3500 Extension 2295

ANSI/MIL-STD-1815A REFERENCE: 1.1.2
PROBLEM:

Some compilers identify errors with catch-all messages such as "syntax error”, or fail to display data
associated with the error, e.g., the name of an undeclared object. Some compilers generate large numbers
of spurious error messages after detecting an error, e.g., after detecting an undefined variable in the
expression of an if statement.

IMPORTANCE: IMPORTANT

Poor compilers make Ada harder to learn, and reduce the productivity of all programmers, even the more
experienced.

CURRENT WORKAROUNDS:
Shop around when looking for an Ada compiler. Unfortunately, there are very few vendors.

POSSIBLE SOLUTIONS:

Add to 1.1.2 a list of errors that a conforming compiler is required to diagnose. Prescribe the minimum
acceptable level of detail that must be written for each of those errors. Add a list of errors for which the
compiler must have adsquate recovery. As part of the Ada Compiler Validation Suite, test and report on
the quality of error diagnosis. Indicate that vendors are encouraged to diagnose errors more precisely than
required by the standard.

1-11
Supplement I

Ada 9X Revision Request 0325

ALLOW CONTROLLED SUBSETS AND SUPERSETS

DATE: September 13, 1989

NAME: Seymour Jerome Metz

DISCLAIMER:

The views expressed in this request are those of the author, and do not necessarily reflect those of Logicon.

ADDRESS: Home: 4963 Oriskany Drive
Annandale, Virginia 22003

Office: Logicon, Inc.
2100 Washington Boulevard
Arlington, Virginia 22204-5704

TELEPHONE: Home: (703) 256-4764
Office: (703) 486-3500 Extension 2295

ANSI/MIL-STD-1815A REFERENCE: 1.1.2
PROBLEM:

The current standard prohibits subsets and supersets, even for a compiler that supports the full language
and is capable of enforcing compliance with the standard.

IMPORTANCE: IMPORTANT

Prohibiting supersets discourages experiments with new language constructs. As a result, the development
of Ada revision, e.g., Ada 200x, must occur without the benefit of experience, and more prototyping will
be necessary in order to evaluate proposed language extensions. Further, there is less incentive to think
about enhancements to the language if they cannot be commercially exploited.

Prohibiting subsets makes it harder to enforce local coding standards. If an installation has no other way

to prevent use of Ada features that are expensive in a particular environment, it may resolve the problem
by selecting a different implementation language.

CURRENT WORKAROUNDS: NONE
POSSIBLE SOLUTIONS:

Change 1.1.2(1) to read

A conforming implementation is one that, when run with default options: ...

1-12
Supplement I

Ada 9X Revision Request 0328

DIAGNOSIS OF QUESTIONABLE SYNTAX OR SEMANTICS
DATE: August 31, 1989
NAME: Seymour Jerome Metz
DISCLAIMER:
The views expressed in this request are those of the author, and do not necessarily reflect those of Logicon.

ADDRESS: Home: 4963 Oriskany Drive
Annandale, Virginia 22003

Office: Logicon, Inc.
2100 Washington Boulevard
Arlington, Virginia 22204-5704

TELEPHONE: Home: (703) 256-4 /64
Office: (703) 486-3500 Extension 2295

ANSI/MIL-STD-1815A REFERENCE: 1.1.2
PROBLEM:

Some programs contain constructs that are legal but potentially dangerous, or that are likely to be
inadvertant, e.g., loss of visibility to identifiers in STANDARD.

IMPORTANCE: IMPORTANT

Without a means for flagging such situations, errors will be harder to detect and software development in
Ada will be more costly and less reliable.

CURRENT WORKAROUNDS:
Shop around when looking for an Ada compiler. Unfortunately, there are very few vendors.

POSSIBLE SOLUTIONS:

Add to 1.1.2 a list of questionable usages that a conforming compiler is required to diagnose, when
requested by a compiler option. Prescribe the minimum acceptable level of detail that must be written for
each of those usages. Prescribe the minimum granularity for requesting this diagnosis. As part of the Ada
Compiler Validation Suite, test and report on the quality of such diagnosis. Indicate that vendors are
encouraged to diagnose questionable usages more completely than required by the standard.

1-13
Supplement I

Ada 9X Revision Request 0630

SUBSETS RECOMMENDED
DATE: October 21, 1989
NAME: Allyn M. Shell

ADDRESS: AdaCraft, Inc.

4005 College Heights Dr.

University Park, MD 20782
TELEPHONE: (301) 779-6024
ANSI/MIL-STD-1815A REFERENCE: 1.1.2

PROBLEM:

The size of an Ada compiler, library manager and runtime system are very large and, therefore, very
expensive to develop. This reduces the number of compiler vendors that compete for a given hardware
platform. Some hardware will never have an Ada compiler due to the size and price constraints.

IMPORTANCE: ADMINISTRATIVE

This problem most directly affects the cost of compilation systems. Somewhat indirectly, the cost of learning
Ada is Also affected.

CURRENT WORKAROUNDS: NONE

(According to the current standard there shouldn’t be any, although the "no Chapter 13" subset is quite
common.)

POSSIBLE SOLUTIONS:

Allow one (or several) subset(s) of Ada which could be implemented and validated separately. Make each
level a proper subset of the next level. Suggested levels:

Full Ada: The fully implemented language including the chapter 13 features.
Level 1: The currently required level of implementation. (not requiring chapter 13 features.)
Level 2: Level 1 without tasking.
Level 3: Level.2 without generics but requiring (pseudo) instantiation of the predefined library
generics.
1-14

Supplement I

Ada 9X Revision Requeits 0187

EXTENSIONS WHEN LENGTH CLAUSES ARE USED

DATE August 10, 1989

NAME: E B Piuty

ADDRESS: Plessey Research

Roke Manor, Romsey
Hants SOS51 0ZN
England

TELEPHONE: +44 794 833483
E-mail: epitty@rokeman.co.uk

ANSI/MIL-STD-1815A REFERENCE: 1.2
PROBLEM:

Currently conupilers are not required to take into account the effects of sign extension when length clauses
are used. For example, it is desired to associate an Ada enumerated type with various condition codes in
a 32-bit host architecture. The literais of three valued enumerated type are specified as mapping to the
values -1, 0, 1. If a length clause is then used to specify objects of this type are to occupy 32 bits, this may
not be sufficient to ensure values can be correctly passed between the program and the host Specifically,
the compiler may (legitimately) use only the lowest say 8-bits to represent the three values, (i.e. "111111117,
"00000000", "10000000"), with the remaining 24-bits be all zero. Consequently the host will see the values
255,0,1 as opposed to 1,0,1.

IMPORTANCE: IMPORTANT
Limitations in the use of Ada with embedded systems or in interaction with other programming languages.
CURRENT WORKAROUNDS:

Can be avoided by explicitly 'coding’ mapping between types as opposed to using length/representation
clauses.

POSSIBLE SOLUTIONS:

For the scenario given above it would be sufficient for the compiler to fully use the 32-bits by sign
extending any negative numbers. However this is dependent upon the compiler and host sharing a common
representation for integers, e.g. 2's-complement.

1-15
Supplement I

Ada 9X Revision Requests 0241

ATOMIC TRANSACTIONS
DATE: May 15, 1989
NAME: J. A. Edwards

ADDRESS: General Dynamics
P.O. Box 748 MZ 1746
Fort Worth, Texas 76101

TELEPHONE: (817) 763-2612
ANSI/MIL-STD-1815A REFERENCE: 13
PROBLEM:

Mutually exclusive control is often necessary in embedded systems with applications sharing data, devices,
IO buffers, processes, etc. Ada has no way to easily support cases where highly efficient, mutually exclusive
activities are necessary. Often, the hardware contains special instructions, such as, Test & Set, but the Ada
grammar does not allow the programmer to write a recognizable construct for the compiler to know to
produce the desired mutually exclusive protection. The problem is even worse for separate compilation
units where the code generator does not have visibility.

IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS:

The only approach in Ada is to add much code to synchronize a mutually exclusive process by way of a
rendezvous for a protected access. This approach draws in all of the runtime support and overhead for a
tasking rendezvous without guaranteeing that you will not have deadlocks or other task control management
problems.

POSSIBLE SOLUTION:

Allow the addition of a new term "atomic” which will signal the mutually exclusive control and access of
a particular object.

1-16
Supplement I

Ada 9X Revision Request 0326
MORE FLEXIBLE NOTATION FOR SYNTAX ‘
DATE: September 13, 1989

NAME: Seymour Jerome Metz
DISCLAIMER:
The views expressed in this request are those of the author, and do not necessarily reflect those of Logicon.

ADDRESS: Home: 4963 Oriskany Drive
Annandale, Virginia 22003

Office: Logicon, Inc.
2100 Washington Boulevard
Arlington, Virginia 22204-5704

TELEPHONE: Home: (703) 256-4764
Office: (703) 486-3500 Extension 2295

ANSI/MIL-STD-1815A REFERENCE: 15
PROBLEM:

The notation used for defining Ada syntax does not allow a clean way of handling certain common ’
situations, e.g., alternatives within a larger expression.

IMPORTANCE: ADMINISTRATIVE

CURRENT WORKAROUNDS:

Define additional syntactic categories.

POSSIBLE SOLUTIONS:

Specify syntactic bracketing characters, similar to the <> brackets of BNF, e.g., allow something like
A= w<xly>z

Specify a permutation notation for a sequence of syntactic categories that may occur in any order.

Provide a means to specify that a particular syntactic category not appear.

Use an attribute grammar. This solves a lot of problems, but it is a rather drastic change.

1-17
Supplement I

—

Ada 9X Revision Requests 0209

REQUIRED REPORTING OF CERTAIN EXCEPTIONS

DATE June 15, 1989

NAME: Mike McNair

ADDRESS: Link Flight Simulation Division of CAE-Link Corporation
1077 E. Arques Avenue
Sunnyvale, CA 94088-3484

TELEPHONE: (408) 720-5871

ANSI/MIL-STD-1815A REFERENCE: 1.6(s)

PROBLEM:

A compiler is not required to report a known, certain-to-be-raised exception, according to the last sentence
in 1.6(s).

IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS: NONE
POSSIBLE SOLUTIONS:

Require compilers to report (or have capability to report) these "certain” exceptions. Knowing this at
compile-time will save debug time and make the final code more maintainable.

1-18
Supplement I

Ada 9X Revision Requests 0236

STATIC SEMANTICS AND SUPPORT FOR FORMAL ANALYSIS
DATE: July 24, 1989
NAME: D J Tombs, and endorsed by Ada-UK

ADDRESS: RSRE
ST. Andrews Road
Great Malvern

Worcestershire
WR14 3PS, UK

TELEPHONE: +44 684 895311
ANSI/MIL-STD-1815A REFERENCE: 1.6, 8 (but not specifically)
PROBLEM:

If Ada is to be used in safety-critical systems then there must be formal methods which are applicable to
Ada programs (as requested by UK Defence Standard 00-55 [2]). An example would be a tool to detect
any uses of recursion or dynamic storage, which are undesirable in a safety-critical program but tedious and
difficult to detect by hand. In addition, there are many applications outside the safety-critical domain where
some higher degree of program surety than mere human inspection is desired. Yet Ada is so large and
complex that it is difficult to give a reasonable formal specification for the static semantics of even small
parts of the language. Program analysis and verification need such a specification.

There are two main sources of problem:

6] where the informal (LRM) definition is long and difficult, but where the meaning of the program
is sorted out by a compilsr front end. Here we are thinking of problems of name visibility and
overloading (LRM sect.8).

(ii) where the semantic behavior is deliberately left undefined. Here we are thinking of the profusion
of erroneous or order-dependent constructs in Ada, and the differing implementations allowed by
LRM sect. 1.6.[3,6)

IMPORTANCE: ESSENTIAL

This request is essential if it is intended that Ada9X should be capable of at least some degree of formal
specification and analysis.

CURRENT WORKAROUNDS:

To date, the author is unaware of any formal toolsets which act on the full Ada language. Most analysis
has been done using a formally specified intermediate language, such as MALPAS IL Under this approach
Ada is compiled to the intermediate language, but with an unspecified mapping, proofs can then only apply
to the intermediate language, although there may be some means of relating the intermediate code and the
source Ada.

Another approach is to take a smail, well-specified language with an Ada-like syntax in which legal programs

1-19
Supplement I

Ada 9X Revision Requests 0236

can be compiled with a validated Ada compiler. This is the attitude taken by SPARK [4] and AVA [5].
For this approach to work the smail language must avoid the Ada constructs which introduce the problems
noted above, otherwise there can be no guarantee that the full compiler will interpret a source program in
a manner consistent with the definition of the small language. Also, a small language might only be used
for writing small programs in the safety-critical field, where it is doubtful that a fuil validated compiler could
be produced which is sufficiently reliable. A small, dedicated compiler might be a better bet.

The ultimate workaround is to use another, more easily defined language.
POSSIBLE SOLUTIONS:

Specifying the overloading and visibility rules is unavoidably difficult. Possibly the best solution to the
problem is to have an intermediate language which is Ada-like, but where all overloading and hiding has
been removed and where expressions in multiple declarations, subprogram defauits, etc., are expanded out.
The mapping from Ada to this intermediate language will be well-defined. A defined expansion of full Ada
is part of Dr. Wichmann’s Low Ada proposal [6].

The above discussion seems to have little bearing on the Ada9X process, but it would be nice to have some
"official” support for attempts to solve the problem.

Conversely, it is part of the Ada9X process to obtain a better definition of what happens when erroneous
or order-dependent code is compiled and run. Possible options include:

. specifying the language fully wherever practicable (eg stating the order of evaluation for some
expressions or insisting that parameter passing be by reference);

. allowing the programmer to state what is desired to happen by means of pragmas;

. insisting that the compiler be self-consistent (presently an implementation is allowed at run-time
to make a random decision on elaboration order!);

. insisting that a validated compiler declare its strategy for at least the majority of erroneous
constructs.

This last seems to be the most flexible and the most immediately achievable. Also, it does not preclude
optimization for parallel and vector architectures, as might happen under a more rigid regime. Obviously
there is much detail to be worked through but it does seem to offer hope of a better situation than
presently exists.

Some consideration might also be given to having an "official" dialect of Ada especially for safety-critical
purposes, which is formally specified and where undesirable constructs like recursion and dynamic storage
are excluded from the definition.

REFERENCES:

(1] Ada9X Revision Request no 89 04 19 0066,, our ref Ada-UK/002

(2] UK Ministry of Defence Interim Defence Standard 00-55 "Requirements for the Procurement of
Safety Critical Software in Defence Equipment”

[3] "Catalogue of Ada Runtime Implementation Dependencies” ACM SIGAda Ada Runtime
Environment Working Group, December 87

[4] "SPARK - The Spade Ada Kernel” B A Carre, T J Jennings, University of Southampton, UK, March
88

{51 "The nanoAVA Definition" Dan Craigen, Mark Saaitink, Michael K Smith, Computational logic,
Austin, Texas, June 88

1-20
Supplement I

Ada 9X Revision Requests 0236

6 "Insecurities in the Ada Programming Language", and private Communication, B A Wichmann, .
National Physical Laboratory, London, August 88

1-21
Supplement I

Ada 9X Revision Requests 0242

ERROR CLASSIFICATION
DATE: June 9, 1959
NAMEL: Judy A. Edwards

ADDRESS: General Dynamics
P.O. Box 748, MZ 1746
Fort Worth, TX 76101

TELEPHONE: (817) 763-2612
ANSI/MIL-STD-1815A REFERENCE: 16, 3.6.1 #4, 3.8.1, & 4.5.7

PROBLEM:

Embedded avionics software requires higher degrees of integrity. An error classification in a language
definition that allows compiler system’s recognizable errors to be propagated into the final linked version
without generating warnings is not in keeping with the spirit of more reliable systems. Currently, a compiler
has a minimal requirement for early recognition of problems. Then, the user may not Jiscover an
inadvertent error until very late in the development cycle when the correction cost is much greater.

The language definition should add a requirement in para. 1.6 to generate a "user warning” at the first
moment that a construct may be considered erroneous at compile time, e.g., incompletely specified, incorrect
constructs, or exceptions. The compilers should also be robust and attempt to produce code even in light
of crrors, but it should not deceive the user that all constructs in the module are correct.

Further, most of the ACVC tests only look for exceptions to be raised for such compile iime erroneous
conditions. In those cases, the compiler should recognize that the only code generation required would be
the exception handler portion and/or an error message.

IMPORTANCE: IMPORTANT

Without the information and warning messages, the user may have to go through several intermediate
testing situations of the executable code for unexpected transfers to exception handlers to be assured that
no surprises will occur in the integrated product.

CURRENT WORKAROUNDS:

Compile and test under the VAX hosted compiler, then retest with the cross compiler with an emulated
target. Finally, retest on the target to see if any breaxpoints on exceptions can be reached. Provide
programming standards to trap those classes of error to special excepticn handlers. Also, the absence of
this capability will need special debug tools for tracking exceptions raised such as program_error, constraint_
error, elaboration_error, and tasking_error.

POSSIBLE SOLUTIONS:

< <minor impact to the language>>

1-22
Supplement 1

Ada 9X Revision Requests 0242

1. Expand the classes of errors to include warning messages to users to be initiated at the earliest
point that the compilation system (including the linker) recognizes incorrect, or potentially incorrect,
units.

< <moderate impact> >
2 Null ranges are a major source for constraint and program errors. Therefore, do not allow
programmers to write "Null" ranges without a new construct, e.g., NULL. Flag the error/ warning

at the earliest level that the compilation system can determine a problem.

3. Delete error-prone constructs and semantics from the language, e.g., places where elaboration errors
can occur.

1-23
Supplement I

Ada 9X Revision Request 0616

COMPILE-TIME DETECTION OF CONSTRAINT ERRORS

DATE: October 19, 1989
NAME: James Lee Showalter, Technical Consultant
DISCLAIMER:

This Revision Request has been submitted to some amount of peer review by others at Rational, but it is
not an official Rational submission.

ADDRESS: Rational
3320 Scott Blvd.
Santa Clara, CA 95054-3197

TELEPHONE: (408) 496-3706 [11am-9pm]
ANSI/MIL-STD-1815A REFERENCE: 1.6(4), 3.3.2(6..9)
PROBLEM:

Many constraint errors are detectable at compile time but it is currently acceptable under the standard to
defer their detection until run time, when it is potentially very hazardous for the error to occur.

IMPORTANCE: ESSENTIAL

It makes no sense for the Ada language to be so carefully designed for reliability, robustness, and embedded
applications (such as satellites, which are notoriously difficult to hook a debugging terminal to once
deployed) and then allow the following to compile:

Foo : Positive := -1;
CURRENT WORKAROUNDS:

Some compiler issue warnings for inevitable constraint errors that are detected at compile time. Some tools
are available that provide additional analysis of such errors (much as "lint" provides additionally analysis of
errors in C programs); Unfortunately, the effectiveness of such tools depends on the maturity of the
programming community’s attitude toward their use.

POSSIBLE SOLUTIONS:

eword LRM 1.6.3(b) and 3.3.2(6..9) to indicate that compilers must perform reasonable analysis of potential
constraint errors at compile time.!

Yes, I admit that the term "reasonable" is subjective and
(therefore worthless in a standard), but you said this section was
optional!

1-24
Supplement I

Ada 9X Revision Request 0616

Actually, it might be possible to say that compilers "Shall detect all inevitable constraint errors that are
detectable by static analysis." This would permit constraint errors that are only detectable dynamically (at
run time) to slip by, but provide a high degree of confidence about dumb errors such as the example given
earlier.

COMPATIBILITY:

The proposed solution is quasi-compatible. Some previously-compiled code will re-compile successfully
some will not: that which does not was inherently dangerous and destined to fail, so the non-compatibility
should be welcomed (as it increases robustness). Execution behavior will also be affected, since errors that
used to occur during run-time will now occur during compile time: these changes should also be seen as
desirable.

1-25
Supplement I

Ada 9X Revision Request

For additional references to Section 1. of ANSI/MIL-STD-1815A, see the following revision request
numbers, and revision request titles and pages in this document.

REVISION REQUEST

NUMBER TITLE PAGE
0243 ELABORATION OVERHEAD TOO COSTLY 3.75
0365 IMPLEMENTATION OPTIONS LEAD TO
NON-PORTABILITY AND NON-REUSABILITY (I) 3-121
0432 IMPLEMENTATION OPTIONS LEAD TO
NON-PORTABILITY AND NON-REUSABILITY (1) 3-124
1-26

Supplement I

ADA 9X REVISION REQUESTS
THAT REFERENCE
ANSI/MIL-STD-1815A

SECTION 2. LEXICAL ELEMENTS

2-1
Suppiement I

—_—

Ada 9X Revision Request 0039

. argument_association ::= [argument_identifier =>] name |
[argument_identifier =>] expression. "

We propose the FORTRAN pragma

pragma FORTRAN (NAMEF [,(Al [,(B1, aggregate { , BM, aggregate})]
{-,AR [,(BR1, aggregate { ,BRM, aggregate})]}

)

where Al, .., AR correspond to the dummy arguments of NAMEF, and B1, .., BM, and
BR1,..BRM correspond to arrays of a dummy subprogram, with bounds given in the subsequent
aggregate (for each dimension lower and upper bounds must be given, all separated by commas),
of the formal generic subprograms. NAMEF denotes the name of the coupled FORTRAN
subprogram.

Name restrictions are imposed by those of FORTRAN. The FORTRAN pragma is an extension of the
INTERFACE pragma and aimed at generic subprograms with only procedures or functions as generic formal
parameters; as extension of the INTERFACE pragma it may be used for the cases treated in section 3, by
substitution of

pragma INTERFACE(FORTRAN, NAME) by pragma FORTRAN(NAME),

large class of numerical problems such as : quadrature, zero finding, optimization, and solving differential
and integral equations, parameterize over a function. Routines in FORTRAN for the above problems
parameterize in general via subprograms as dummy arguments. When a dummy subprogram itself contains
an array as dummy argument, one must supply information about the bounds, because FORTRAN generally
lacks this information. (This is done via the above mentioned aggregates.)

' It is a pity that in Ada subprograms are allowed as parameters of subprograms only via generic units. A

It must be kept in mind that use of the FORTRAN pragma with generic units severely restricts the generic
formal parameters: together with the FORTRAN pragma only functions and subprograms are allowed as
generic formal parameters, because that is what we need in order to coupic FORTRAN subprograms with
dummy subprograms and it will probably relieve the implementation of the FORTRAN pragma.

2-6
Supplement I

Ada 9X Revision Request 0311

DECOUPLE ADA FROM CHARACTER SET .

DATE: September 13, 1989

NAME: Seymour Jerome Metz

DISCLAIMER:

The views expressed in this request are those of the author, and do not necessarily reflect those of Logicon.

ADDRESS: Home: 4963 Oriskany Drive
Annandale, Virginia 22003

Office: Logicon, Inc.
2100 Washington Boulevard
Arlington, Virginia 22204-5704

TELEPHONE: Home: (703) 256-4764
Office: (703) 486-3500 Extension 2295

ANSI/MIL-STD-1815A REFERENCE: 21, 25, 3.5.2
PROBLEM:

The current LRM restricts Ada to the ASCII 7-bit character set. This makes use of Ada awkward on .
machines with other character sets, e.g., EBCDIC, and will automatically render the Ada LRM obsolete
every time ANSI or ISO revises ASCIIISCIL

IMPORTANCE: IMPORTANT

Without this capability, users of machines with EBCDIC, 12-bit or 16-bit characters will tend to favor other
languages over Ada. Where use of Ada is mandated, reliability will suffer due to the additional code needed
in order to deal with private character types. Adherence to national and international standards for
character sets will also suffer.

CURRENT WORKAROUNDS: NONE
POSSIBLE SOLUTIONS:

Revise the standard to specify that STANDARD.character is an enumeration type that includes all the
current ASCII characters, and to specify the sequence of the first 128 enumeration literals, without
preciuding additional characters. Specify the characters that a conforming implementation must allow in
literals and in constants, without proscribing additional graphic characters. Specify any restrictions on
national alphabetic characters. Allow all format effectors where ASCII format effectors are allowed.

227
Supplement 1

e

Ada 9X Revision Request 0330

ALLOW NATIONAL CHARACTERS IN LITERALS, COMMENTS AND

IDENTIFIERS
DATE: March 25, 1989
NAME: Erland Sommarskog
ADDRESS: ENEA Data AB
Box 232
$-183 23 T[BY ([" = "A" with dots.)
SWFEDEN
TELEPHONE: +46-8-7922500 (from April 22th, 1989)

E-mail: sommar@enea.se

ANSI/MIL-STD-1815A REFERENCE: 2.1, 23,25, 26
PROBLEM:

Today Ada disallows non-printing characters in string literals and comments. As "non-printing” are defined
all characters outside the range 32-126 in ASCIIL. This is very unfortunate since many environments provide
printing characters outside this range. Particularly they are used for characters that are common in other
languages like English. (E.g. "A" with dots in German, Finnish and Swedish, "E" with accents in French.)
Thus, they are very likely to be used in programs which manipulates texts in these languages. However Ada
does not permit them, even in string constants, which makes use of them very troublesome.

Furthermore, these characters are often placed in the range 128-255, which is outside the range of the
predefined type Character.

Most of these eight-bit sets are defined as ASCII in the bottom half from 0 to 127, and special characters
in the upper half. Most important of these are the nine sets defined by ISO 8859. But the language should
cause as few obstacles as possible for any character set.

One could divide the problems into three areas: Literals, comments and identifiers. In the case of literals,
as already has been said, application requirements are the reason to use an extended set.

As for comments and identifiers, being able to use the full range of the (non-English) alphabet in names
and comments makes the program much easier to read.

A problem which is beyond my scope, but must be remembered is the size of character variables. This is
normally eight bits, which is too little for languages like Japanese and Chinese. A minimum requirement

for these languages must be the possibility to use their characters in strings and comments. I know too
little to say anything about their occurrence for identifiers.

IMPORTANCE: ESSENTIAL/IMPORTANT

String literals and comments: ESSENTIAL. The situation today is totally unsatisfactory and if any change
should be made to the standard right today, it is this one.

Identifiers: (Very) IMPORTANT. I don’t rank this as "essential”, since I know there might be conflicting

2-8
Supplement I

Ada 9X Revision Request 0330

requirements. Particularly since I know there is a risk that a program that uses national characters is less
portable. I still feel that this problem is less than not being allowed to use my native language in entirety
in my Ada code.

CURRENT WORKAROUNDS:

Comments and identifiers: Use English. Often desired of other reasons, for instance if code and
documentation is to be read by persons from other countries. Yet, in many cases unsatisfactory. The
programmer is often much more fluent in his own language than English. And the English produced may
not always be understandable by a native English speaker.

Another workaround is to drop accents, dots etc. This gives a poor language which also is harder to read.
String literals: Define an extended character type with character literals for the ASCII characters and
enumeration types for the others. Define a new string type to incorporate the new "characters”. Write a
new Text_io to handle 1/0 of the new "characters”. This solution is totally unsatisfactory for such a common
problem. Being forced to write a string as

"H" & LC_E_ACUTE & "1" & LC_E_GRAVE" & "ne’

is tedious, error-prone and hard to read.

A simpler solution is define character constants with Unchecked_ conversion from the integer codes and
then pray that the compiler is not too keen on doing range checks on character variables.

This is of course not very portable.
POSSIBLE SOLUTIONS:

1) Extend the predefined type Character to have 255 elements. This will break programs that rely
on that character have 128 elements, for instance a program declares an

ARRAY (character) OF Some_type
and then is sensitive for the size of the array. Hopefully, this is a rare problem.

An alternative as providing a new type, say Character_8, is hardly satisfactory, since would indicate
that an eight-bit character has something special, when it should be the normal case.

2) (Solution taken away.)

3) Remove the restriction that only printable character are allowed in strings. Any character should
be allowed except the line terminator. It is on the user’s response that the program is portable in
this sense or not.

4) Whenever possible Ada should regard an eight-bit character code as just that. It is beyond the
scope of Ada to say that if the code 65 is output an "A" is being displayed. The only case Ada
must put meaning into the codes is when interpreting of the program code itself (except string
literals and comments). In this case Ada should rely on ISO 8859 instead of ASCII today.

5) Provide predefined packages like the current ASCII for the nine character sets defined by ISO

2.9
Supplement I

Ada 9X Revision Request 0330

6)

8859. (All of them have ASCII in positions 0-127, control characters in 128-159, then various
characters in the positions 160-255.

Extend the set of characters allowed in identifiers based on ISO 8859. This is where things are
getting tricky. If Ada like C and Modula-2 had been case-sensitive, the problems had easily been
solved by allowing all characters in the range 161-255.

Of the nine sets in ISO 8859, Latin-1 will be the most commonly used. In this set the characters
192-214 and 216-222 are paired with a lower-case correspondent 32 positions up. 223 (German
double S) and 255 ("y" with diaeresis) are unpaired. 215 and 247 are non-letters.

The situation is the same in Latin-2, 3 and 4, except that there are also letters in the range 160-
191. In this case uppercase and lowercase are paired with a distance of 16. 1 don’t know about
the Cyrillian, Arabic, Hebrew, Greek and Latin-5 sets. One solution to this dilemma is to have a
pragma to tell which character set is in use. The set would then define which characters were
allowed. It is easy to see that this solution is not workable. Packages not based on the same
character set would get difficulties to cooperate.

Restrict Ada to 83859/1 (Latin-1) only. This makes it simple for Ada, but is unfriendly to people
in Eastern Europe, Russia, Greece, Arabia and Israel.

Extract the rules from the standard if possible. As far as Latin-1 to 4 it is, although it would allow
for strange names in Latin-1. But, once again, that is on the programmer’s response, not on the
language.

2-10
Supplement 1

Ada 9X Revision Request 0367

NATIONAL LANGUAGE CHARACTER SETS
DATE: September 1989
NAME: Randal Leavitt (Canadian AWG #003)

ADDRESS: PRIOR Data Sciences Ltd.
240 Michael Cowpland Drive
Kanata, Ontario, Canada
K2M 1P6

TELEPHONE: (613) 591-7235

ANSI/MIL-STD-1815A REFERENCE: 2.1 (1), 2.2 (1), 2.6 (1..6), 2.10 (4), 2.10 (7), 3.1 (7), 3.5.2
(1.4), 3.63 (3), 4.2 (3..5), 4.5.2 (9), 4.5.3 (2), 14, Appendix
C

PROBLEM:

In Canada operational software used by the Department of National Defence (DND) must provide an
equivalent user interface in each official Canadian language: English and French. Consequently, the
displayed text and accepted inputs for an interactive program must be equally clear and usable in both
English and French. The user must be able to select the language that will be used at the beginning of
each interactive session.

These programs are difficult to develop because the Ada standard provides direct support for English, but
does not provide equivalent support for French. The predefined type CHARACTER does not include the
accented characters required for French. String literals cannot easily include accented French characters,
and the string comparison operators such as "<" do not sort French words correctly.

IMPORTANCE: ESSENTIAL
CURRENT WORKAROUNDS:

1. Use the predefined CHARACTER and STRING types and output French words without accents.
This creates difficulties for the French user. For example, the French work "cote" can have four
different meanings depending on the accents used. This approach is not acceptable for critical DND
applications.

2. Define a new type and provide the required operations for input, output, string comparison, and

other functions. The type and its operators can be placed in an Ada package. However, with this
approach it is difficult to express string literals for the new type.

POSSIBLE SOLUTIONS:

Base the Ada standard on ISO 8859-1 instead of ASCIL

2-11
Supplement I

Ada 9X Revision Request 0438

HANDLING OF LARGE CHARACTER SET IN ADA
DATE: October 2, 1989
NAME: Yoneda Nobuo

ADDRESS: Department of Information Science
Tokyo University
7-3-1 Hongo Bunkyo-ku
Tokyo 113 Japan

TELEPHONE: +81-3-812-2111
+81-3-818-1073 (fax)
E-mail: nishida@nttslb.ntt.jp (CSNET)

ANSI/MIL-STD-1815A REFERENCE: 2.1, 25, 2.6, 2.7, 3.5.2, 3.5.5, 3.6.3, 4.2, 4.6, 14.3, 14.4,
Appendix A, C

PROBLEM:

Current Specification does not allow using of multi-octet character set.

With relatively recent advances in desktop publishing and international communication, it is increasingly
important for programming languages to provide guarantees for text processing applications in an
international level. In this regard, ISO SC22 asks it working groups to take necessary actions to internalize
their languages especially in character handling features.

Ada limits the characters in the program text to the ASCII graphic characters and this makes it prohibitive,
rather than simply inconvenient, for us to handle Japanese text, which uses large set of characters. It is

highly desirable to modify Ada so that a large character set can be handled easily in it

In accordance with DoD’s Ada 9x project, we propose modification of Ada in character handling to make
it truly internationalized language.

IMPORTANCE:
CURRENT WORKAROUNDS:
POSSIBLE SOLUTIONS:

See Handling of Large Character Set in Ada, SC22/Ada WG Japanese Body, September 12, 1989.

2-12
Supplement 1

Ada 9X Revision Request 0528

DATE:
NAME:
ADDRESS:

PRONUNCIATION OF SYMBOLS
October 30, 1989
Jolie Mason
Unisys Corporation
Mail Station B20S

5151 Camino Ruiz
Camarillo, CA 93010

TELEPHONE: (805) 987-6811 Ext. 4582

ANSI/MIL-STD-1815A REFERENCE: 21, 2.2

PROBLEM:

Chapter 2 gives official names for special characters, other special characters and compound delimiters. In
a number of cases, these do not correspond to common usage or are prone to error in (human or
computer- synthesized) voice communication.

The Ada language was designed with a concern, explicitly stated in the Steelman requirements, that reserved
words should be pronounceable. Common practice in the Ada community is to also make identifiers
pronounceable. It is logical to extend this concern to the Ada symbol set as well.

Making the Ada symbols as readable as possible would not require a change to the Ada language, but it
would require a change to the Reference Manual.

There are several reasons why it is important to make such a change.

M

)

C)

Thete is a growing number of blind Ada programmers, and to this group a readable
language means a hearable language. A blind programmer must be able to completely
understand Ada code by listening to the code as it is read.’

There is new federal legislation (Public Law 99-506 Section 508, ™ "he Electronic Curb-Cut
Law") which requires all computer equipment purchased or leased by the federal government
to be adaptable for the handicapped. This means that all government-related computer
hardware, software and databases must be adaptable for the handicapped.

The most important reason is that everyone, at one time or another, must communicate
Ada verbally. We all need to communicate verbally as we discuss problems, solutions or
questions regarding code. The increasing use of the telephone and teleconference makes
it more and more imporiant that we speak Ada consistently. Spoken communication is
not as efficient if it requires negotiating how symbols are to be referred to in order to
insure unambiguous communication.

IMPORTANCE: IMPORTANT

CURRENT WORKAROUNDS: N/A

2-13
Supplement 1

Ada 9X Revision Request 0528

POSSIBLE SOLUTIONS:

The following suggested pronunciations are the result of evaluating the pronunciatior. choices used by three
distinct voice synthesis speech sets, the reading instruction manual used by Recording for the Blind, and
Verbal Mathematics by Author.

In summary, the research showed that voice selections varied between synthesizers. Common usage is
arbitrary; however, the choices in the suggested pronunciations prefer a strong internal consistency. It is
also important to note that the more quickly the pronunciation of the symbol can be finished, the easier
it is to understand; for example, the longer word "parenthesis” is shortened to "paren.” The Recording for
the Blind manual makes a ccnvincing case for distinguishing punctuation from text; for example, the word
"sign" has been added after some symbol names. The mathematical pronunciation guide supports scientific
choices for pronuncia‘ion, rather than linguistic or musical references; for example "caret” is used rather
than "circumflex.”

symbol name suggested name

" quotation double quote

The symbol name remains consistent whether or not preceded by "double".
sharp number sign, pound sign

The musical reference is inappropriate in the Ada context.
& ampersand ampersand, and sign

The meaning of the word "and" is self-evident; the word "sign” is must be included
to distinguish text from punctuation.

’ apostrophe single quote, prime

The word "single” mv<t be included because the word "quote” is frequently used to
mean either " or .

(left parenthesis open paren

The phrase "paren” is completely understandable; the longer phrase "parenthesis”
takes unnecessary time.

"Open” and "close” make pairing clear. For example, "left paren left paren
expression right paren left paren expression right paren right paren” is confusing;
"open paren open paren expression close paren open paren expression close paren
close paren" is easier to process mentally.

) right parenthesis close paren
See: (
* star, multiply
2-14

Supplement I

Ada 9X Revision Request 0528
+ plus
) comma
- hyphen, minus dash, minus

The symbol name remains consistent whether or not preceded by "double”, since
"double dash" is used for comments.

dot, point, period

colon

; semicolon

< less than less than, open angle bracket
"Open" and "close” make pairing clear when used as angle brackets.
All bracket symbol characters have consistent names of the form <action> <type
of line used to draw symbol> bracket.

= equal

> greater than greater than, close angle bracket
See: <

_ underline underscore, under
The symbol is used as a character of itself and is not used to underline another
character.
"Under" is shorter but perfectly clear.

vertical bar vertical line, or sign

The word "line" is used in other symbols.
The word "or" is meaningful when used in choices; "sign” must be included to
distinguish text from punctuation.

! exclamation mark exclamation mark, exclamation
"Exclamation” is shorter but perfectly clear.

s dollar dollar, dollar sign

"Dollar sign" is common usage.

2-15
Supplement 1

Ada 9X Revision Request 0528

%

percent

question mark question mark, question
"Question" is shorter but perfectly clear.

commercial at at sign
The phrase "commercial” is not commonly used.

left square bracket open square bracket
"Open” and "close” make pairing clear.

All bracket symbol characters have consistent names of the form <action> <type
of line used to draw symbol> bracket.

The word "square” must be included because the word "bracket” is frequently used
to mean either [,] or {, }.

back slash

right square bracket close square bracket
See: |

circumflex caret, up arrow

The linguistic reference is inappropriate in the Ada context.
grave accent grave accent, back accent

The linguistic reference is inappropriate in the Ada context.
left brace open curly bracket

"Open” and "close” make pairing clear.

All bracket symbol characters have consistent names of the form <action> <type
of line used to draw symbol> bracket.

To eliminate the confusion between "bracket” and "brace,” only the word "bracket”
is used to describe bracket or brace symbols.

right brace close curly bracket
See: {
tilde
arrow association, arrow,
2-16

Supplement I

Ada 9X Revision Request 0528

associated with .

The meaning of the sign is more clearly understood if it is included in the
pronunciation of the symbol.

double dot

b double star,
exponentiate

assignment
{pronounced: "becomes”)

/= inequality
(pronounced: "not equal®)
>= greater than or equal
<= less than or equal
<< left label bracket open label bracket

"Open" and "close” make pairing clear.

>> right label bracket close label bracket
See: << .
<> box
2-17

Supplement 1

Ada 9X Revision Request 0556

. USE OF PARENTHESES FOR MULTIPLE PURPOSES
DATE: October 30, 1989
NAME: Stephen J. Schmid

ADDRESS: Hughes Aircraft Company
Building S31-P322
P.O. Box 92919
Los Angeles, CA 90009

TELEPHONE: (213) 648-2098
ANSI/MIL-STD-1815A REFERENCE: 21, 3., 4.6, 6.1
PROBLEM:

In Ada, parentheses are used for all of the following:

-Enclosing parameters to a subprogram

-Indication an array indexing operation

-Enclosing an expression for a type conversion
When an Ada statement is written which contains more than one of these operations, (and especially if it
contains all three), it becomes very unreadable, due to the lack of clarity of the function of the parentheses
in each case.

. Example:
A := function_name (array_name (type_name (parameter)));
A:=B(C(D(E)))
IMPORTANCE: IMPORTANT -
CURRENT WORKAROUNDS:
Choosing names wisely helps somewhat, but does not solve the probiem.
POSSIBLE SOLUTIONS:

I feel the best solution would be the following:
Use square brackets for array indexing.
Use braces for type conversion.
Compilers could be written to either accept both forms (for compatibility with past programs), or
a switch could be provided to do one or the other, or, a conversion program could be provided
which would change existing code.

Then the above example would be:

A:=B(C[D(E)])
Even without descriptive names, we can now tell what is going on in this statement.

2-18
Supplement I

Ada 9X Revision Request 0704

MAKE EVERY BIT AVAILABLE TO THE APPLICATION PROGRAMMER .
DATE: October 27, 1989
NAME: Michael F. Brenner
DISCLAIMER:
The opinions are mine; not necessarily InterACT’s.
ADDRESS: InterACT Corporation
417 Fifth Avenue
New York, New York 10016
TELEPHONE: (212) 696-3680
ANSI/MIL-STD-1815A REFERENCE: 2.1(1), 86, 4.5, 3.54, 13
PROBLEM:
Address clauses placing data at address 16#FF_FF_FF_FF# on a 32 bit machine, bit strings extending
beyond a word boundary in a record representation, 32-bit unsigned integers for 32 bit processors, full range
of fixed point numbers, the last bit of accuracy in floating point numbers, and eight-bit ASCII have been
submitted in various forms to the Ada Commentaries and to the Ada 9X Project as if they were unrelated
problems. ‘

IMPORTANCE: ADMINISTRATIVE

CURRENT WORKAROUNDS:

The current workaround is for these to be considered by the Ada 9X Committee as if they were separate
unrelated issues, with the consequence that a non-integral approach might be accepted.

POSSIBLE SOLUTIONS:

The Ada 9X Committee should consider these problems as a single integrated issue and remove any
restrictions the language imposes which prevent an embedded systems developer from using every available
bit.

2-19
Supplement 1

I

Ada 9X Revision Request 0736

INCOMPATIBLE NATIONAL VARIATIONS OF THE ISO STANDARD 646
DATE: October 16, 1989
NAME: C. Gregor H. Stenderup

ADDRESS: Aarhus University
Computer Science Department
Ny Munkegade 116
DK-8000 Aarhus C
Denmark

TELEPHONE: +45 86 12 71 88
E-mail: gregor@daimi.dk

ANSI/MIL-STD-1815A REFERENCE: 2.1(1), 2.1(4), 2.1(10), 2.1(13), 14.3.10(1), C(13), C(15)
PROBLEM:

The incompatible national variations of the ISO standard 646 make it impossible for Ada to support the
modern European text-handling requirements.

These national variations are not merely that some special characters have been given different graphical
representations (as 2.1(13) seems to indicate when comparing the US and the UK variations), but also that
many countries have had to discard some special characters in order to make room for all their letters. The
national variations of ISO standard 646 have therefore become incompatible. As an example let me show
the letters of Denmark and Germany.

Denmark: ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
Germany: ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopgqrstuvwxyz

Both Denmark and Germany have discarded [, V', ’)’, °[’, '{’ and ’}’ in order to give the letters consecutive
ordinal order.

Currently the EEC is doing a lot of work to merge the independent home markets of its twelve
memberstates into one huge international market. This work is to be completed by 1992.

As a consequence there will be applications that need to store or handle information originating from more
than one country. Such applications include maintaining a European mailing-list (names, addresses, ...),
automatic translation of text (laws, directives, regulations, letters,...) between any two of the languages used
in the EEC, electronic document interchange within the EEC.,...

None of these applications can accept having to choose one of the national variations of the seven-bit ISO
standard 646, they all need an eight-bit version of the ASCII standard.

The AJPO might also face this problem, if an Ada-program is used to record this Ada 9X revision request.

IMPORTANCE: ESSENTIAL

2-20
Supplement I

Ada 9X Revision Request 0736

You cannot expect the european countries to discard parts of their alphabets in order to accommodate
application design in Ada. If the request is not satisfied by the revision, it is more likely that other
languages (Pascal, Modula-2,...) would be used for most application design in Europe (the UK could be an
exception).

CURRENT WORKAROUNDS:

A workaround could be to redefine the type CHARACTER to have 256 elements or to map the characters
onto bytes as done in C. Input and output of characters from/to a terminal/console can then be done with
the SEQUENTIAL_IO package. Both SEQUENTIAL_IO and DIRECT _IO can also be used with disk files.
However TEXT_IO cannot be used with such a redefined CHARACTER type.

POSSIBLE SOLUTIONS:

Replace the seven-bit ISO standard 646 with a suitable eight-bit version of the ASCII standard, thus
changing C(13):

FOR CHARACTER USE (0, 1, 2, ..., 254, 255);

Logically the CHARACTER type belongs in the ASCII-package (C(15)), into which it should be inserted.
STANDARD should then rename it:

TYPE CHARACTER RENAMES ASCII.CHARACTER;

Eventually a pragma ASCII could be used to replace the ASCII-package (some hosts support several ASCII-
versions):

PRAGMA ASCII (version);
Another possibility would be to make the TEXT_IO-package another package (or an instance of a generic

package). This would also solve the racing problems that can occur when using TEXT_IO and file variables
inside TEXT_IO’s body are shared variables).

221
Supplement I

Ada 9X Revision Request 0504

PROPOSAL FOR AN EXCHANGE OPERATOR

DATE: October 22, 1989
NAME: Douglas Arndt
ADDRESS: SAIC

5151 East Broadway

Suite 9500

Tucson, AZ 85711
TELEPHONE: (602) 748-7400
ANSI/MIL-STD-1815A REFERENCE: 22,5
PROBLEM:

Exchanging values between two variables is commonplace but using traditional Ada techniques is clumsy
and potentially inefficient on newer architectures.

IMPORTANCE: IMPORTANT

This would be a very nice feature, particularly in applications where exchanges are common such as matrix
manipulation.

CURRENT WORKAROUNDS:

Typically, a temporary variable is used in the following fashion:

temp := a;
a = b;
b (= temp;

This is not particularly attractive or readable since it takes three assignments to accomplish one logical
operation. The operation can be encapsulated in a generic procedure but this requires an instantiation
everywhere it is used. Furthermore, this process is inefficient on newer architectures that support exchanges
directly in hardware or microcode.

POSSIBLE SOLUTIONS:

A new operation for exchanges should be added to the language. Add a new compound delimiter, ":=:"
(called "exchange”), to LRM 2.2. Add a section to chapter 5 describing the exchange statement. The
exchange should be pre-defined for all objects that are assignment compatible. The code example given
above could then be rewritten:

a:=:b;

Note: the exchange operator in the form given above (i.e., :=:") was adapted from the Icon language.

2.22
Supplement 1

Ada 9X Revision Request 0391

CLUMSY SYNTAX FOR REPRESENTING BASED NUMBERS
DATE: September 23, 1989
NAME: Stephen J. Wersan, Ph.D.

ADDRESS: Code 3561
NAVWPNCEN
China Lake, CA 93555
TELEPHONE: (619) 939-3120,

Autovon 437-3120
E-mail: WERSAN%356VAX.DECNET@NWC.NAVY.MIL

ANSI/MIL-STD-1815A REFERENCE: 242, 43

PROBLEM:

Clumsy syntax for representing based numbers, especially when used in an aggregate.
IMPORTANCE: ADMINISTRATIVE

CURRENT WORKAROUNDS:

Stick to established syntax.

POSSIBLE SOLUTIONS:

Suggested revision to aggregate syntax --

An entire aggregate or a subunit of an aggregate which must currently be written as shown in the following
examples

(B#275#, 8#276#, 8#277#) or
(RED => 8#275#, PINK=> 8#276#, BLUE => 8#277#)

could also be written as fcllows

8#(275, 276, 277)# or
8#(RED=> 275, PINK => 276, BLUE => 277)#

One might regard the construction '8#(’ as opening a declaration (of assumed radix) whose scope is ended
by ")#’, so that nesting one such declaration inside another may be treated by the ordinary rules of scoping
and visibility.

2.23
Supplement 1

Ada 9X Revision Request 0397

MEANING OF PRAGMA’S NOT IMMEDIATELY OBVIOUS
DATE: October 12, 1989
NAME: William Thomas Wolfe

ADDRESS: Department of Computer Science
Clemson University
Clemson, SC 29634 USA

TELEPHONE: (803) 656-2847
E-mail : wtwolfe@hubcap.clemson.edu

ANSI/MIL-STD-1815A REFERENCE: 238
PROBLEM:

The keyword "pragma” is not a part of the English language, and its meaning is not immediately obvious.
CONSEQUENCES:

New users of Ada find this keyword to be non-intuitive, contributing to the difficulty of learning and using
Ada.

CURRENT WORKAROUNDS: NONE
POSSIBLE SOLUTIONS:

Substitute "Compiler:" for "pragma”.
To show that this is more natural, apply the following test:

Below is a list of keywords from one or more unknown programming languages. Please write down your
best guess as to the purpose of each keyword.

1) pragma
2) Compiler:

If this test is given to a programmer who is reasonably intelligent but has no prior knowledge of Ada, the
results will be as follows:

1) Don’t know.
2) This looks like a compiler directive.

This sort of procedure should generally be followed when selecting keywords, in order to minimize the
difficulty of learning and using the language and thereby maximize the language’s accepiance.

2-24
Supplement 1

Ada 9X Revision Request 0692

LEGALITY OF PROGRAMS WITH IMPL.-DEFINED PRAGMAS
DATE: October 23, 1989
NAME: Erhard Ploedereder

ADDRESS: Tartan Laboratories Inc.
300 Oxford Drive
Monroeville, PA 15146

TELEPHONE: (412) 856-3600
E-mail: ploedere@tartan.com
E-mail: ploedere@ajpo.sei.cmu.edu

ANSI/MIL-STD-1815A REFERENCE: 238
PROBLEM:

There are numerous examples of implementation-defined pragmas whose purpose is a user-provided
guarantee to adhere to certain restrictions. E.g., tasking related pragmas that promise certain characteristics
of an entry.

It is counter-productive to require that the compilation must succeed even if such assertions are violated.
The user should be warned as early as possible (by non-acceptance of his/her program) that the given
assertions have been violated.

IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS: NONE
POSSIBLE SOLUTIONS:

2.8 (8) should be altered to allow for implementation-defined pragmas that may render text outside such
pragmas illegal. However, no Ada implementation may require the presence of such pragmas in Ada
programs.

2-25
Supplement I

Ada 9X Revision Request 0729

A FACILITY TO TURN OFF OPTIMIZATION

DATE October 12, 1989

NAME: B. A. Wichmann (endorsed by Ada UK)

ADDRESS: National Physical Laboratory
Teddington, Middlesex
TW11 OLW, UK

TELEPHONE: +44 1 943 6076 (direct)
+44 1 977 3222 (messages)
+44 1 977 7091 (fax)
E-mail: baw@seg.npl.co.uk

ANSI/MIL-STD-1815A REFERENCE: 2.8 and Appendix B
PROBLEM:

The language defines a pragma to optimize, either for time or space. However, no facility is provided in
the language to turn off optimization, should an impiementation perform optimization by default.

If optimization were always correct and did not increase compiling speeds significantly, then there would
be little need to have the requested option. However, research at NPL has indicated that even mature
compilers for simpler languages than Ada contain significant bugs in the code-generator, and that turning
off any optimization reduces the bugs. The UK Interim Defense Standard on safety-critical software
(00-55) specifies that optimization should be turned off.

In most critical applications in which bugs are unacceptable, the user will wish to turn off optimization even
if some performance loss is incurred. This can only be achieved by means of a new language-defined
pragma in a portable fashion.

Another situation in which removal of optimization may be needed is concerned with debugging, since
otherwise there is likely to be no simple correspondence between the source text and the binary program.
Similarly, this simple correspondence may be needed if for assurance reasons, the output from the compiler
must be checked by hand.

IMPORTANCE: IMPORTANT

for some critical application areas.

CURRENT WORKAROUNDS:

An implementation can either not perform optimization by default, or provide an implementation-defined
pragma to turn off optimization. An alternative approach is for an implementation to provide a different

mechanism, outside the language, to control the optimization. An example of this approach is a compiling
option invoked as a parameter to the command line on calling the compiler.

2-26
Supplement I

Ada 9X Revision Request

0729

POSSIBLE SOLUTIONS:

Add a new language-defined pragma to the language or extend the existing pragma OPTIMIZE.

2.27
Supplement I

Ada 9X Revision Request 0754

REQUIRED WARNINGS FOR UNRECOGNIZED PRAGMAS

DATE: October 31, 1989

NAME: Mike Kamrad

ADDRESS: Unisys Computer Systems Division
M/S U2F13
PO Box 64525

St. Paul MN 55164-0525

ANSI/MIL-STD-1815A REFERENCE: 238
PROBLEM:

The Ada language does not require an implementation to warn the user about unrecognizable pragmas.
Failure to warn the user about an unrecognizable pragmas can mislead the user. All pragmas which the
iriplementation can not recognize a pragma should produce a warning to the user.

IMPORTANCE:

SPECIFIC REQUIREMENT/SOLUTION CRITERIA:

All pragmas which the implementation can not recognize a pragma should produce a warning to the user.
CURRENT WORKAROUNDS:

JUSTIFICATION/EXAMPLES/WORKAROUNDS:

The user may never learn that a pragm- is not recognized by an implementation until execution time. This
will cause more debugging work for Ada users for a situation that an implementation can easily recognize
at compile time. Supposedly the Ada user can consult Appendix F of the Ada language reference manual
to find out which pragmas is not recognized. Of course, if this same reasoning could be used for all other
syntactic and semantic rules of Ada, then there would be no need for any warning or error messages from
any implementation.

NON-SUPPORT IMPACT:

This will cause more debugging work for Ada users for situation that an implementation can easily
recognize.

POSSIBLE SOLUTIONS:
All pragmas which the implementation can not recognize a pragma should produce a warning to the user.
DIFFICULTIES TO BE CONSIDERED: NONE

REFERENCES/SUPPORTING MATERIAL: NONE

2-28
Supplement I

——-—.——w

Ada 9X Revision Requests 0211
REPORTING OF PRAGMA ERRORS .

DATE: June 15, 1989

NAME: Mike McNair

ADDRESS: Link Flight Simulation Division of CAE-Link Corporation
1077 E. Arques Avenue
Sunnyvale, CA 94088-3484

TELEPHONE: (408) 720-5871
ANSI/MIL-STD-1815A REFERENCE: 2.38(9, 11)
PROBLEM:

A compiler is not required to report an un/ecognized or incorrectly used (including parameter usage and
placement) pragma.

IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS: NONE
POSSIBLE SOLUTIONS: .

Since the compiler is checking these conditions anyway, the compiler should report the problems found,
i.e., unrecognized, misplaced, incorrect, etc. pragmas and use.

2-29
Supplement I

Ada 9X Revision Request 0756

REQUIRE WARNINGS FOR PRAGMAS IGNORED

DATE October 20, 1989

NAME: Elbert Lindsey, Jr.

ADDRESS: BITE, Inc.
1315 Directors Row
Ft. Wayne IN 46808

TELEPHONE: (219) 429-4104

ANSI/MIL-STD-1815A REFERENCE: 2.3(11)

PROBLEM:

In paragraph 2.8(11), the LRM suggests that compilers issue warnings when pragmas are ignored. This
should be made a requirement for two reasons. First, this allows a badly placed pragma to be ignored with
no indication given to the programmer; the rules for pragma placement are not well-formed (different
pragmas have different rules; the syntactic category pragma does not appear elsewhere in the syntax rules
of the language); this puts a burden on the programmer to verify pragma placement. Second, some pragmas
(such as INLINE and PACK) may have important effects on the performance/size of the resulting code:
it seems desirable to know whether or not the compiler intends to obey them.

IMPORTANCE: IMPORTANT

CURRENT WORKAROUNDS: Not applicable

POSSIBLE SOLUTIONS:

Require that compilers indicate whenever a pragma is ignored and the reason (e.g., badly placed, syntax or
other error in the pragma, or not recognized by the current implementation).

2-30
Supplement I

—

Ada 9X Revision Request 0322

DO NOT ADD NEW RESERVED WORDS TO THE LANGUAGE

DATE: August 31, 1989
NAME: Seymour Jerome Metz
DISCLAIMER:

The views expressed in this request are those of the author, and do not necessarily reflect those of Logicon.

ADDRESS: Home: 4963 Oriskany Drive
Annandale, Virginia 22003

Office: Logicon, Inc.
2100 Washington Boulevard
Arlington, Virginia 22204-5704

TELEPHONE: Home: (703) 256-4764
Office: (703) 486-3500 Extension 2295

ANSI/MIL-STD-1815A REFERENCE: 29
PROBLEM:

Existing programs may have identifiers for, e.g., types, that duplicate new keywords. Migrating such
programs to Ada 9X will be costly.

IMPORTANCE: ESSENTIAL

Otherwise the cost of migrating to Ada 9X may be unacceptable.

CURRENT WORKAROUNDS:

Rewrite all existing compilation units that have identifiers matching reserved words in Ada 9X.
POSSIBLE SOLUTIONS:

Ensure that all new syntactic categories are such that keywords can be distinguished from identifiers by
context.

2.31
Supplement 1

*ﬁ

Ada 9X Revision Request 0619

. ELIMINATION OF REPLACEMENT CHARACTERS
DATE: October 19, 1989

NAME: James Lee Showalter, Technical Consultant

DISCLAIMER:

This Revision Request has been submitted to some amount of peer review by others at Rational, but it is
not an official Rational submission.

ADDRESS: Rational
3320 Scott Bivd.
Santa Clara, CA 95054-3197

TELEPHONE: (408) 496-3706[11am-9pm)
ANSI/MIL-STD-1815A REFERENCE: 2.10(1-8)
PROBLEM:

The three replacement characters 't for * °, "’ for "#’ and "%’ for ** make listing much harder to read, as
well as increasing the complexity of parsers.

. IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS:
Don’t use the replacement characters.

POSSIBLE SOLUTIONS:

Eliminate the three replacement characters. Use the normal ASCII character set instead.
COMPATIBILITY:

The proposed solution is non-upward-compatible. Successful recompilation of previously-compiled code is
not guaranteed. However, since almost every everyone has printers that print the full ASCII character set

(this being 1989 instead of 1946, after all), almost nobody uses the replacement characters, thus, this change
will impact very few people, if any.

232
Supplement I

Ada 9X Revision Request

For additional references to Section 2. of ANSI/MIL-STD-1815A, see the following revision request

numbers, and revision request titles and pages in this document.

NUMBER
0049

0210

0432

0708

REVISION REQUEST

TITLE

REFERENCE TO VARIABLE NAMES
MAINTENANCE PRAGMAS

IMPLEMENTATION OPTIONS LEAD TO
NON-PORTABILITY AND NON-REUSABILITY (I)

IMPLEMENTATION OPTIONS LEAD TO
NON-PORTABILITY AND NON-REUSABILITY (II)

INFIX FUNCTION CALL

2.33
Supplement I

PAGE
5-4

15-19

3-121

3-124

6-97

ADA 9X REVISION REQUESTS
THAT REFERENCE
ANSI/MIL-STD-1815A

SECTION 3. DECLARATION AND TYPES

31
Suppiement I

Ada 9X Revision Request 0098

IMPORTANCE: ESSENTIAL

This is no way of overcoming this problem, without using assumptions about the type about to be made
visible, and probably unchecked conversions.

CURRENT WORKAROUNDS: NONE
POSSIBLE SOLUTIONS:

Allow for the limitations of order of declaration introduced by generic instantiations, and permit wider use
of incomplete types, possible in a similar way to private types prior to their full declaration.

346
Supplement I

Ada 9X Revision Requests o161

INITIALIZATION FOR ALL DATA TYPES ‘
DATE: March 21, 1989
NAME: Larry Langdon

ADDRESS: Census Bureau
Room 1377-3
Federal Office Bldg 3
Washington, DC 20233

TELEPHONE: (301) 763-4650
E-mail(temporary): langdonl@ajpo.sei.cmu.edu

ANSI/MIL-STD-1815A REFERENCE: 3
PROBLEM:

It seems peculiar and makes the language feel asymmetric when you can create a record type that carries
its own initialization with it but you can’t make (for example) an integer type that does likewise.
Initialization should be allowed for all non-limited data types. Examples of the use of this feature include:

a) The creation of an integer type whose objects’ values are always initialized to zero unless another
value is specified. In particular, these objects are always initialized.

b) The creation of a string type whose objects are always initialized to blanks in the aosence of . 1
another specific initialization.

IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS:

Depending on the situation, using initializations in object declarations, or changing a type declaration to
have an "enclosing” record.

POSSIBLE SOLUTIONS:

Acceptable syntax for this feature might include:
type COLOR is (white, red, yellow, green) := yellow;
type my_integer is range 1..100 := 33;

type int0 is new integer := O,
type strblank is new string := (others=>'");

NOTE: This proposal (in slightly different, but substantively identical form) was approved as an Ada
Language Issue (LIS8) by the Ada Language Issues Working Group of SIGAda. The final vote,

taken March 1, 1989, was:
347 ®

Supplement 1

Ada 9X Revision Requests

<

in favor
against

348
Supplement 1

Ada 9X

Revision Request 0803

PROPOSAL FOR SUBPROGRAM TYPES

October 21, 1989

NAME: Douglas Arndt

ADDRESS: SAIC

5151 East Broadway
Suite 900
Tucson, AZ 85711

TELEPHONE: (602) 748-7400

ANSI/MIL-STD-1815A' REFERENCE: 3,6

PROBLEM:

There is currently no way to specify subprograms as objects. In particular, they can’t be assigned to
variables, stored in array and record structures, or passed as parameters to other (non-generic) subprograms.

The lack of syntax and semantics for subprogram types creates serious problems implementing a certain

class of

software component that I will call "dispatchers”. Dispatchers are a necessary part of many

applications. 1 have tried t0 capture the essence of the problem in the following code:

package

private

Menu_Example is
- This package is a simple abstraction of a general-purpose menu dispatcher. It is very
- similar to menu interfaces provided on some Unix workstations.

type MENUS is private;
- MENUS objects can consist of any number of "buttons®. A button has a name and an
- associated action. Buttons can be dynamically added and removed from a menu item.

type BUTTON_IDENTITY is ..; -- whatever; probably dynamic string
procedure Add_Bution (to_the_menu : in out MENUS;
button_name: in BUTTON_IDENTITY;
action_to_perform : in ?);

procedure Push_Button (the_menu : in MENUS;
button_name : in BUTTON_IDENTITY),

type MENUS is ...

end Menu_Example;

349
Supplement 1

Ada 9X Revision Request 0503

EE—E

The specification is properly abstracted from a software engineering viewpoint. That is, the implementation
of the MENUS type is hidden and the package doesn’t have unnecessary visibility into any higher-level units.
The problem now is how to specify the action to be taken when a button is pushed. The most
straight-forward way is to pass the procedure to the constructor routine (i.e., Add_Button) for storage with
the menu object until the button is pushed.

package Menu_Example is
type MENUS is private;
type BUTTON_IDENTITY is ..;

type ACTION is procedure;

BB A A A A AAAAASSS

- Note that this is the declaration of a subprogram type. The exact syntax is TBR.

conan

procedure Add_Button (to_the_menu : in out MENUS;
button_name :in BUTTON_IDENTITY;
action_to_perform :in ACTION);

BRGAAAAAAAAAAAAAAAANAA A AAAANA A2

- action_to_perform is now a subprogram of type ACTION that can be invoked or assigned
t0 a variable within Add_Button

.....

procedure Push_Button (the_menu : in MENUS;
button_name : in BUTTON_IDENTITY);

private
type MENUS is ...
end Menu_Example;

Now a user can add buttons to a menu dynamically and designate the procedures associated with each.
Assuming that the implementation of MENUS objects is an array of buttons, and each button is a
composite type with fields for the name and action, then the body of Add_Button might look like:

procedure Add_Button (to_the_menu : in out MENUS;
button_name :in BUTTON_IDENTITY;
action_to_perform :in . ACTION) is
begin
-- determine the index of the next button
to_the_menu (i).name_field := button_name;
to_the_menu (i).associated_action := action_to_perform;
-- “ note: assigning a subprogram to a field in a record object

end Add_Button;

The body of Push_Button would be abie to access the same field, and, since it is a subprogram, execute it
directly as it would any other:

3-50
Supplement 1

Ada 9X Revision Request 0503

procedure Push_Button (the_menu : in MENUS;
button_name : in BUTTON_IDENTITY) is

begin

.. - search through all the buttons via loop, table lookup

-- or whatever

if the_menu (i).name_field = button_name then

the_menu (i).associated_action; -- procedure call!

end if
end Push_Button;

IMPORTANCE: ESSENTIAL

A wide variety of languages, including C, Modula-2, Lisp, many Pascals, and even Fortran, provide some
form of subprogram typing, allowing them to be passed as actual parameters and/or stored as variables. The
lack of a comparable feature in Ada may (and, [believe, will) cause many to ignore Ada’s positive features
and select another language.

BiiN felt that the need for subprogram types was so important that they went "outside” the language and
implemented them via pragmas. Unless subprogram types are added to Ada 9x, I fear that there will be
more attempts to extend the language in such uncontrolled ways.

CURRENT WORKAROUNDS:

The universal nature of dispatchers makes them necessary in many applications. The Ada research literature
is beginning to see more references to the difficulty of implementing them in Ada. One description is found
in "ERS: An Expert System Shell Designed and Impiemented In Ada® by Stuart Hirshfield and Thomas
Slack (Proceedings of AIDA-88, published by George Mason University). They analyze the problem
(specifically, the inability to implement jump tables) in detail and discuss different workarounds and why
none are completely acceptable. They state:

"..Ada’s lack of a funcall equivalent caused us some inconvenience. In terms of ERS, the easiest
way to dispatch to the evidence and external action functions is to place the actual function pointers
into the inference net where they will be needed (i.e., within the nodes they are associated with).
A funcall equivalent could then be used to execute them directly.”

Hirshfield and Slack discovered a VAX-specific way to pass and execute subprogram objects by calling
operating system interface routines. They showed uncommon good sense and restraint by rejecting that
approach and working harder to find an Ada solution. The ¢éventual solution was not very good from a
software engineering perspective, however, and would undoubtedly be scoffed by C programmers: they wrote
a program 1o generate a package with hard-coded options.

Generics do not offer an acceptable solution for a number of reasons. First of all, they lack a mechanism
10 store the subprograms passed to them as parameters. That is, a subprogram passed to a generic unit
is only visible within that unit and can’t be made available to other units via assignment to global structures.
Furthermore, it is not possible to pass a variable numbe- of arguments to generic units. Finally, generic
instantiations exist from the time of their instantiation until the end of their declarative scope. It is not
possible to selectively "de-instantiate® them without the use of complex scoping techniques.

POSSIBLE SOLUTIONS:

3.51
Supplement I

Ada 9X Revision Request 0503

The example given above demonstrates a possible solution where the keyword "procedure” is used within
a type statement. Alternately, the syntax could be adapted from task type declarations, e.g.,

function type IS_IT_PRIME (number : INTEGER) return BOOLEAN;

SRA A A AN

The specific syntax is really unimportant as long as subprograms (both procedures and functions) can be
assigned to variables, aggregated within arrays and records and passed as parameters 0 other subprograms.

Any approach that is adopted should be consistent with Ada’s historic goals, especially strong typing. [see
no reason why the addition of subprogram types can’t be completely upward compatible with existing Ada.

3.52
Supplement I

Ada 9X Revision Request 0520

NEED "SEQUENCE" TYPE WITH FIXED LOWER BOUND
DATE: October 29, 1989
NAME: S. Tucker Taft

ADDRESS: Intermetrics, Inc.
733 Concord Avenue
Cambridge, MA 02138

TELEPHONE: (617) 661-1840
E-mail: stt%inmet@uunet.uu.net
E-mail: wft@ajpo.sei.cmu.edu

ANSI/MIL-STD-1815A REFERENCE: 3
PROBLEM:

The fact that Ada supports arbitrary lower bounds for array types which are representing sequences rather
than mappings is a serious source of bugs in Ada code.

It is very common to simply code "str(1)" instead of "str(str’ FIRST)" and to code "str(st’LENGTH)" instead
of "str(st’LAST)". This kind of code introduces bugs which only reveal themselves long after the code is
thought to work perfectly, when by chance the "str” parameter happens to have a lower bound other than
i (because it is a slice, usually).

Ada provides automatic array subtype conversion (aka ‘sliding™) to partially overcome the problems
associated with explicit lower bounds, but the contexts where sliding is performed are not well know to most
Ada programmers, and the presence of sliding makes named array aggregates with an others clause illegal
in the same contexts t0 the great mystery of most Ada programmers.

When an array is in fact representing a mapping from the index type to the operand type, sliding is
generally an error (especially if the index type is an enumeration type), however there is no way to declare
that sliding is illegal, especiaily on assignment, meaning that non-meaningful assignments can be performed.

The fundamental problem is that Ada uses the single array class of types to represent both sequences, where

explicit lower bounds are a pain and “sliding” should be automatic, and mappings, where an explicit lower
bound is often useful and sliding is not generally meaningful.

IMPORTANCE: ESSENTIAL

Confusions over sliding, and "LAST /= 'LENGTH, 'FIRST /= 1, are a major source of bugs, introduced
by Ada’s explicit arbitrary lower bounds for arrays.

CURRENT WORKAROUNDS:

The workaround for the named-with-others array aggregate problem is generally to enciose it in a qualified
expression. The workaround to prevent sliding on assignment is to turn the array type into a discriminated
record type witl a nested array. Unfortunately, this eliminates the built-in concatenate and slicing.

3.53
Supplement I

Ada 9X Revision Request 0520

POSSIBLE SOLUTIONS:

It should be possibie to distinguish between "mapping"-style arrays and "sequence”-style arrays. For mapping
arrays, no automatic sliding should occur, though explicit subtype conversion should probably be allowed.

For sequence arrays, the lower bound should be fixed at 1, with all operations (concatenate, slice, string
literal) producing a result with a lower bound of 1. Index constraints for sequences should specify only the
length”LAST, and not 'FIRST.

The simplest solution is to provide two pragmas
pragma MAPPING(<array type>);

and
pragma SEQUENCE(<array type>);

The effect of pragma MAPPING would be to disable automatic sliding, and to allow the use of named
aggregate with others in all contexts where the bounds of the result are known from context.

The effect of pragma SEQUENCE would be to allow the use of a single high bound in an index constraint,
to require that the low bound be 1 if specified, and to cause all slices and concatenate to automaticaily slide
so that the resulting sequence has a low bound of 1 again. 'FIRST would be statically equal to 1 for all
objects of a sequence type, including formal parameters of "unconstrained” sequence type. The low bound
of the index subtype in an array sequence type definition would be required to be statically equal to 1. Note
that this would mean that the "dope” for an unconstrained sequence parameter would only need to include
the high bound, thereby speeding up parameter passing, and all component references within the
subprogram.

Ada 83 rules would apply in the absence of either pragma, and for all multi-dimensional array types.
STANDARD.String would be declared to be a SEQUENCE.

3.54
Supplement 1

Ada 9X Revision Request 0522

ALLOW DISCRIMINANT OF ARBITRARY NON-LIMITED TYPE
DATE: October 29, 1989
NAME: S. Tucker Taft

ADDRESS: Intermetrics, Inc.
733 Concord Avenue
Cambridge, MA 02138

TELEPHONE: (617) 661-1840

E-mail: stt%inmet@uunet.uu.net
E-mail: taft@ajpo.sei.cmu.edu

ANSI/MIL-STD-1815A REFERENCE: 3
PROBLEM:

Ada currently restricts record-type discriminants to discrete types. There is no apparent reason for this
restriction. Since discriminants are the ways that a type may be parameterized, it is useful to be able to
provide any non-limited type of parameter.

Furthermore, discriminants may only be changed by full-object assignment, and therefore represent effectively

"constant” components. There are times when it is important that a component of a record be treated as
a constant, but currently, this is only possible for discrete types.

IMPORTANCE: IMPORTANT

When declaring an object, it is often useful to parameterize the declaration/initialization, with any type of
discriminant. Furthermore, it is desirable to be abie to have constant components of a record of any type.

CURRENT WORKAROUNDS:

To parameterize 2n initialization, it is possible o pass any type of object to a function used to initialize
the object. However, there is no way to control defauit initialization this way.

POSSIBLE SOLUTIONS:

Allow any non-limited type as a discriminant.

3.55
Supplement 1

Ada 9X Revision Request 0523

ALLOW INITIALIZATION/FINALIZATION FOR TYPES
DATE: October 29, 1989
NAME: S. Tucker Taft

ADDRESS: Intermetrics, Inc.
733 Concord Avenue
Cambridge, MA 02138

TELEPHONE: (617) 661-1840

E-mail: stt%inmet@uunet.uu.net
E-mail: taft@ajpo.sei.cmu.edu

ANSI/MIL-STD-1815A REFERENCE: 3
PROBLEM:

Only certain classes of types allow explicit initialization. Furthermore, the initialization is limited to
expressions initializing components of a record. No types allow explicit finalization. This is useful for types
which require some resource deallocation or release prior to leaving the scope in which an object is
declared. This would make the most sense for limited types, since other types use built-in assignment for

copying.
IMPORTANCE: ESSENTIAL

Generalized initialization, and finalization for limited types is critical to being able to construct safe and
efficient subsystems.

CURRENT WORKAROUNDS:
Initialization can be accomplished by wrapping a type in a record.

There is no support for finalization, and it requires that all users of a type make an explicit call to a
cleanup subprogram before exiting a scope.

POSSIBLE SOLUTIONS:

All types should allow the specification of a default initial expression. Private types should allow the
specification of a sequence of statements to initialize the object.

Limited types should allow the specification of a procedure to be called upon scope exit, or unchecked
deallocation of an object of that type. Limited types with finalization are treated somewhat like task types
when returned from a function, namely the returned object is *not*® a copy, but rather designates the same
object. It is erroneous to return an object outside of its scope. Discuss possible solutions for addressing
the stated problem.

3-56
Supplement I

Ada 9X Revision Request 0524

SUPPORT EXPLICIT REFERENCES TO OBJECTS
DATE: October 29, 1989
NAME: S. Tucker Taft

ADDRESS: Intermetrics, Inc.
733 Concord Avenue
Cambridge, MA 02138

TELEPHONE: (617) 661-1840
E-mail: stt%inmet@uunet.uu.net
E-mail: taft@ajpo.sei.cmu.edu

ANSI/MIL-STD-1815A REFERENCE: 3,6

PROBLEM:

There are times when it is useful to create an explicit reference (pointer) to an object. Currently, an object
rename in Ada effectively creates a reference to an object. However, it is not possible to return a reference
to an object. This means that it is not possible to implement an array abstraction in Ada where a function
could return a reference to a particular element of an array available for assignment.

Furthermore, there are times when it is semantically relevant whether an object is passed by copy or by

reference. It is generally easy to force pass by copy, by simply declaring a local copy. However, there is no
way to force pass by reference. This is particularly important for shared objects.

IMPORTANCE: IMPORTANT

A good general reference mechanism can be used to solve many problems, including passing subprograms
as parameters, controlling copying of shared objects, and implementing an array abstraction.

CURRENT WORKAROUNDS:

Renames provide a limited form of reference, but they cannot be used for returning an object, nor do they
ensure parameter passing by reference.

POSSIBLE SOLUTIONS:

There are really two problems, one is passing and returning references to objects to/from subprograms. The
other is storing references t0 objects (or subprograms) for later use.

When passing a reference t0 an object, there is generally no danger that the obiect will disappear before
the reference is gone, so lifetime of the reference is not a big issue.

When returning a reference, generally the reference is either 10 a global, or is to some component of one
of the parameters of the subprogram.

For stored references, the reference-type should be declared much like an access type, except that instead

3.57
Supplement I

Ada 9X Revision Request 0524

of an allocator, references are created by converting from a designated object. The conversion is only
allowed if the scope of the designated object ends at the same point, or later than that of the reference
type. This means that the designated object must be declared at the same level as the reference type, or
must be declared in a declarative region enclosing the declaration of the reference type. Typically, both the
reference type and the designated objects

3.58
Supplement 1

Ada 9X Revision Request 0525

N — -]

ADA SHOULD SUPPORT INHERITANCE AND POLYMORPHISM
DATE: October 29, 1989 .
NAME: S. Tucker Taft

ADDRESS: Intermetrics, Inc.
733 Concord Avenue
Cambridge, MA 02138

TELEPHONE: (617) 661-1840
E-mail: stt%inmet@uunet.uu.net
E-mail: taft@ajpo.sei.cmu.edu

ANSI/MIL-STD-1815SA REFERENCE: 3
PROBLEM:

Inheritance and polymorphism as supported by languages such as C++ and SmallTalk represent an
important mechanism for disciplined evolution and reuse of code.

Ada currently has minimal support for inheritance (via derived types), and no support for run-time
polymorphism (the ability for code to take objects of more than one type and 10 automatically select
appropriate operations based on the run-time type). This lack of support interferes with the use of Ada
in areas of growing importance such as object-oriented graphic interfaces, object-oriented databases, type-safe
extensible interpreters, etc.

IMPORTANCE: ESSENTIAL

If Ada is not augmented to support inheritance and polymorphism, an important class of problems will be
significantly more difficult to solve in Ada than in languages like C++. Furthermore, code reuse will be
limited since existing abstract data types cannot be reused for slightly different applications without copying
and editing the source, which is often impractical due to proprietary code or configuration management
considerations.

CURRENT WORKAROUNDS:

Heavy use of generics can sometimes work around the limitations. However, the resulting generics present
major stress to current compiler technology, and rarely achieve the flexibility or reusability desired.

POSSIBLE SOLUTIONS:

As a minimum for inheritance, it should be possible to define a derived record type which has more
components than the parent type, as follows:

type T1 is new TO with record
F1 : integer := E1;
F2 : float := E2;

end record,

3-59
Supplement I

Ada 9X Revision Reguest 0525

N T e R e N IO

This could be preceded by "type T1 is new TO with private;” in a visible part if desired. The resulting type
T1 would have all of the components of TO plus the new components. The components from TO would be
referencable as a group, perhaps as Ol.others (presuming O1 : T1). In other words, it would be roughly
as though T1 were declared as:
type T1 Is record
F1 : integer := EJ;
F2 : float := E2;
others : TO;
end record,

The semantics for calls on the derived subprograms would be by selection of ".others” rather than by
conversion, to ensure that fields new to T1 would not be affected by calls on the subprograms inherited
from TO. Of course, these derived subprograms could be overridden as usual for a derived type, in which
case the new subprograms could access/update the new fields.

Conversion from T1 to TO would be equivalent to Ol.others. Conversion from TO to T1 would be equivalent
to declaring an object of type T1 with the ".others® fields initialized from the TO object, and with the new
T1 fields default-initialized. Conversion between two derivatives of TO implicitly involves a conversion to
their nearest common ancestor type and then to the target type.

A record aggregate for T1 could only use "others" to refer to the TO components as a group, rather than
its usual meaning.

Such a derived type may also add discriminants specified in parentheses immediately after the "with®, e.g.:
type car is new vehicle with(num_wheels : small_int) record
. pressure : psi_array(l..num_wheels);
end record,
Similar to a record type, it wouid be useful to be able to add enumerals to an enumeration type, as follows:
type E1 is new EQ with (enuml, enum2, ...);
The additional enumerals would have to be distinct from the enumerals of EQ, and would be assigned
position numbers starting at EO'POS(E0'LAST)+1. Conversion from E1 to EQ would perform a constraint
check to ensure that the position number of the operand was less than or equal to EO'POS(E0’LAST).
Conversion between two derivatives of EO implicitly involves a conversion to their nearest common ancestor
type and then to the target type.
Given this as a mechanism for inheritance, it is useful to be able to talk about a (root) type and all types
derived from it. All such types will have some definition for the derivable subprograms of the root type,
either by inheriting that of their parent, or by explicitly overridirg it with a new definition. Note, however,
that we don’t want 1o slow down uses of specific types when known at compile time.

Therefore, it makes sense to define a new kind of type, a polymorphic type, which represents a root type
and all of its derivatives. Here is a proposed syntax:

type T_Star is all TG;
This declares a new type, T_Star which is itself derived from TO, but with a special definition for each of

® 360

Supplement |

Ada 9X Revision Request 0525

the derived subprograms. Any value of type T_Star retains an identification of some non-polymorphic type
from which it came. When a derived subprogram is called on a value of type T_Siar, the retained
non-polymorphic type determines which particular definition of the derivable subprogram is calied. All IN
and IN-OUT T_Star parameters to the same derivable subprogram are required to have the same retained
type, and a CONSTRAINT_ERROR s raised if they don't all match. The retained type of an IN-OUT,
OUT, or function results of T_Star type will also match this same retained type upon return.

Roughly, T_Star may be thought of as a derivative of TO with an extra discriminant, as follows:
type T_Star is new TO with (Retained_Type : Type := TO) record
case Retained_Type is
when TO => null;
when T1 => <TI’s fields>;
when T2 => <T2'’s fields>;

end case;
end record;

Any derivable subprogram with no IN or IN-OUT parameters of T_Star type will be treated as implicitly
overloaded on all non-polymorphic types derived from TO, and hence must be resoivable by context to the
particular derived subprogram.

Any type derived from TO is implicitly convertible to type T_Star. Explicit conversion from T_Star to any
type derived from TO is equivalent to converting first to the retained type, and then to the nearest common
ancestor, and then finally to the 1arget type.

Objects of type T_Star are like discriminated records, and may be either constrained or unconstrained.
Constrained objects only hold values of a singie retained type. Unconstrained objects can hold values of
any type derived from TO. The maximum size of such values is not known at compile-time, and so generally
such objects will be implemented with a hidden pointer. The 'CONSTRAINED attribute may be used to
determine whether a parameter of type T_Star is constrained or unconstrained. Local objects of type T_Star
are by default unconstrained, though they may be declared constrained as follows:

O_param : T_Star(param.retained_type); -- object with same
-- retained type as a parameter

This is presuming that the implicit discriminant is actually accessivle by the name “retained_type® or
equivalent.

tLiere is an example of use, illustrating a heterogenous implicitly-linked list:

type Root is record null; end record;
procedure Print_[tem(R : Root) is begin null; end Print;
procedure Print_Rest(R : Root) is begin null; end Print;

type Root_Star is all Root;
procedure Print_List(R : Root_Star) is
begin
Print_ltem(R); -- Print first element of list
Print_Rest(R); -- Print rest of list (recursively)
end Print_List;

3-61
Supplement I

Ada 9X Revision Request 0525

type List_Root is Root with record

Next : Root_Star; -- Recursive data structure

-- Pointer implicitly required

end record;
procedure Print_Rest(L : List_Root) is
begin

Print_List(L.next); — Print rest of list, recursively
end Print_Rest;

type Some_Record is new List_Root with record
Name : String(1..10);

end record;
procedure Print_Item(S : Some_Record) is
begin
Put(S.name & ' °); -- Print this item of list
end Print_[tem;

Note that by judicious definition of derivable subprograms, all explicit case statements may be removed from
code, and additional types may be derived from List_Root each with its own definition of Print_Item, with
the right one called by

Print_List automatically.

3-62
Supplement I

Ada 9X Revision Request 0563

SUBPROGRAM TYPES AND VARIABLES
DATE: October 21, 1989
NAME: Stephen Baird

ADDRESS: Rational
3320 Scott Bivd.
Santa Clara, CA 95054-3197

TELEPHONE: (408) 496-3600
ANSI/MIL-STD-1815A REFERENCE: 3
PROBLEM:

Subprogram types and variables have been useful in other languages. Their inclusion in Ada would greatly
increase its usability for object-oriented programming, numerical analysis, dynamic configuration of large
systems, etc. Generic formal subprograms are not an adequate substitute.

IMPORTANCE: ESSENTIAL
CURRENT WORKAROUNDS: NONE
POSSIBLE SOLUTIONS:

There are at least two issues that any solution must address. First, there is the problem of dangling
references (what happens when a subprogram (and its statically enclosing environment) ceases to exist, but
there are variables that may refer to it). And second, how are parameter subtype constraint checks made
on indirect calls through a procedure variable. For example, can a procedure with a single Integer
parameter be used as a value of a procedure type whose profile specifies a single Natural parameter? And
if so, how are the proper parameter constraint checks made on calls to variables of this type? We propose
the following solution:

A subprogram type could be declared using a syntax similar to that for task types by including the keyword
TYPE in a subprogram specification:

procedure type P (X : Integer := 17);
function type F (X : Integer) return Boolean;

The predefined operators and operations for a subprogram type are those of a private type (e.g. equality,
assignment, qualification) and the operation of calling. The literals of a subprogram type are all
subprograms whose parameter profiles conform to that of the type declaration and whose lifetime is no
shorter than that of the type(i.e. there exist no task bodies, subprogram bodies, generic specifications or
bodies, or block statements that enclose the subprogram declaration but not the subprogram type
declaration). These rules guarantee statically that there will be no dangling references.

All subprogram types also have a literal NULL which is the default initial value for all objects of the type.
Attempts to call a subprogram variable with the value NULL will raise Program_Error (as will a call to a

3.63
Supplement 1

Ada 9X Revision Request 0563

.

variable whose value is that of a subprogram whose body has not yet been elaborated).

The parameter profile of a subprogram is said to conform to that of a subprogram type declaration if they
have the same number of arguments and the mode and base type of corresponding arguments are the same.

When a subprogram name is used as a literal of a subprogram type, a check is make that the constraint on
cach of the parameter subtypes matches that of the corresponding parameter subtype in the specification
of the subprogram type. Constraint_Error is raised if the check fails. This will guarantee that constraint
checks can be done at the call site using the parameter subtypes of the subprogram type declaration.

procedure type P (X : Natural),
function type F return Integer;

function F1 return Integer is ..
function F2 return Integer is ..;

procedure P1 (X : Natural) ..,
procedure P2 (X : Integer) ...;
procedure P3 (X : Boolean) ..;

Procedure example is
X : array (1..4) of P,
Flag: Boolean;
procedure P4 (X : Natural) is ...;

begin
X(1) := P4; - Illegal, lifetime of P4 is shorter than that of type P.
X(2) := P3; -- lllegal, parameter profile of P3 does not match that of P.
X(3) := P2; -- Legal, but raises constraint error since the constraints on the parameter
subtypes of P2 do not match those of P.
X(4) := P1; -- Legal, no constraint error.
X(4) (17); -- A call to the current value of X(4),
-- i.e, PL.
Flag := F1 + F2; --lllegal, ambiguous use of "="
end Example;

Remaining issues that seem straightforward, but need to be resolved, include interactions with subprogram
renames, parameter passing rules for parameters of subprograms types, subtypes and derived types.

3-64
Supplement I

“

Ada 9X Revision Request 0647

PROCEDURE VARIABLES
DATE: October 23, 1989
NAME: UIf Olsson
ADDRESS: Bofors Electronics AB
S-175 88 Jarfalla
Sweden

TELEPHONE: +46 758 10000
FAX: +46 758 15133

ANSI/MIL-STD-1815A REFERENCE: 3,6
PROBLEM:

The language lacks the ability to select actions depending on state, except through the use of case
statements. Using procedure and function variables in the way defined by RTL/2 would be a simple,
elegant, efficient and perfectly safe method.

In our experience, procedure variables came in very handy for instance when you write dispatchers for
message handlers.

IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS:

State encoding through enumeration types. The resuiting case statements are normally a lot less efficient
than the resulting indirect subroutine call that procedure variables would mean.

POSSIBLE SOLUTIONS:

Make it possible to declare variables like this:

My_Proc : procedure (Left : in Integer; Right : out Natural);
My_Func : function (Input : in String) return Boolean;

Then, given the declarations

procedure A (First : in Integer; Second : out Natural);
function B (Data : in String) return Boolean;

X: Natural;

Y: Boolean;

this would be legal:

My_Proc := A;

My_Func := B;

3-65
Supplement 1

Ada 9X Revision Request 0647

My_Proc (Left => 123, Right => X);
Y := My_Func(Input => "Marvelous!");

It would also be legal to assign an entry name to a procedure variable, if the parameter profiles match.

Note that if procedure/function variables are inciuded as record types; this can provide a cheap form of
object declaration; especially if a <> default value convention is chosen so that the default value for the
procedure/function variable is take as the procedure by the same name visible at the point of declaration
of the record type. This would also require a self function, that always referred to the record instance that
contained the procedure/function variable that was called.

A case where this would have been very useful for us is in the area of interprogram communication, where
one needs to be able to specify what is to be done with an incoming message. The only way t0 do this now
is through generics, which on most architectures forces code duplication.

3-66
Supplement I

Ada 9X Revision Request 0745

INTELLIGENT STRONG TYPING
DATE: October 30, 1989
NAME: David W. Ketchum

ADDRESS: 108 Halstead Ave
Owego, NY 13827

TELEPHONE: (607) 687-5026
ANSIMIL-STD-1815A REFERENCE: 3, 4.55, 46, 4.10, 5.2, 6, 14
2ROBLEM:

Ada’s typing is certainly strong in the sense of being rigid. However, the very rigidity often causes it to
Luerfere with rather than assist in clearly stating a program’s goals.

For example, if L, A, and V are declared with types LENGTH, AREA, and VOLUME, addition and
subtraction will be fully protected but all reasonable use of multiplication or division will require explicit
conversions (or laborious overloading); misuse of the same conversions will permit unreasonable operations
while some unreasonable operations (e.g., A:=A*A) will be permitted without conversion. However, if L,
A, and V have identical types Ada’s typing cannot offer any protection.

IMPORTANCE: IMPORTANT

Presumably the dearth of Ada 9X revision requests on this topic is due to expected futility in trying for
improvemext, rather that lack of recognition that problems exist. Need for intelligent language support
for interaction of units-of-measure data has been discussed many times. The three listed references describe
a simplified impiementation considered justifiable from savings on a single project, Pascal-oriented details,
and Ada-oriented details:

1. G. Baldwin, Implementation of Physical Units, SIGPLAN Notices 22, 8 (1987), 45-50.

2. A. Dreiheller, et al., Programming Pascal with Physical Units, SIGPKAN Notices 21, 12 (1986), 114-
123,

3. N. H. Gehani, Ada’s Derived Types and Units of Measure. Software-Practice and experience 15

(1985), 555-569.
CURRENT WORKAROUNDS:
L Where its rigidity interferes, Ada’s typing gets disabled.

2 Attributes that cannot be described via Ada typing get documented in commentary, if at all, and
related scaling conversions are calculated manuaily.

POSSIBLE SOLUTIONS:

3.67
Supplement I

Ada 9X Revision Request 0745

Dreiheller and Gehani, together, provide a base for constructing a solution. Following text attempts to
provide added insight (but without claiming to be a complete design): Here new syntax permits more
completely describing attributes of data in Ada declarations, and new semantics rules govern use of such
data. However, existing semantics remain undisturbed for code which does not invclve variabies based on
the new syntax Proposed changes are keyed to current LRM content:

31

3.2

33.2

333

354
3597
3.5.9

3.10

Add, as a type of declaration: units_declaration

Add, as content for object_declaration and number_declaration: [units_constraint] This iets simple
variables specify units attributes and lets named constants have both numeric value and units
attributes (e.g., units RADIANS := 3.14159)

Add, as a type of constraint: units_constraint

A units constraint may be applied 10 a type mark that already imposes a units constraint--and the
effect is the combined effects of the two constraints.

Add, as an attribute: T UNITS. This returns the units attribute of T, formatted as a character

string which could legally be incorporated in Ada source, and ordered in the order that the various
base units were declared. NULL is returned if T has no units attribute (whether or not units are

permitted for type T).

Among the uses for TUNITS are to make units attributes accessible to output routines and to make
attribute requirements accessible to input routines.

Add, as content for integer_type_definition; [units_constraint]

Add, as content for floating_point_constraint: [units_constraint]

Add, as content for fixed_point_constraint: [units_constraint]

Add a new section:

3.10 Units Declarations and Constraints

A units declaration assigns a name 1o a units constraint. A Jnits constraint identifies a collection
of units-of-measure attributes.

units_declaration ::=identifier_list . units_constraint,
units_constraint :: = units units_expression

- No time to complete the formal syntax today, so requirements for units declarations and
constraints will be substituted:

1. The basic set of units declarations belong in package STANDARD. Systems International
(SI) is a good starting point for determining package STANDARD content, although Ada
may wish to omit some and add some (e.g., English units defined in terms of S| base units).

2. A base declaration, such As A for Ampere, m for meter, or s for second, needs a null units
attribute and has an implier 1 or 1.0) as scale and an implied 1 as exponent

3.68
Supplement 1

Ada 9X Revision Request 0745

It seems appropriate to disable the basic Ada83 type mechanism for units data becaus< it .
is overly restrictive. and for simpie programs the basic units services which guarantee that

length, current, area, ewc. dont trip over each other should be sufficient. For more

complex programs priva.c base dimensions can be added at the point where data originates

and accounted for where the data is used.

3. Users must be able to declare new case units, as well as coding secondary declarations
involving new scaling and various combinations of previous declarations.

4. While the SI standard prefixes include m for milli and M for Mega, Ada’s inability to
distinguish case in identifiers bites us once more.

5. Scales must be exact, 10 minimize losses during conversion. Perhaps the answer is that
scales; must be either integers or ratios of integers.

6. Dimensionality (volume = length **3, length = volume °**1/3)) also must be exact.

7. Most conversions of scale involve simple multiplications or divisions, but some require
invocation of conversion functions (Fahrenheit vs Celsius; decibels; etc.).

8. Sample declarations:

m : units NULL,; --base unit of length
cm : units (1/100) * m;

liter : units 1000 * cm**3;

inch : units (254/100 * cm;

foot : units 12 * inch; .
miles : units 5280 * foot;

s : units NULL; --base unit of time
min : units 60 * s;

hour : units 60 * min;

hour2 : units 3600 * s;

vell : units miles/hour

vel2 : units miles * hour**-1,

velcl : constant units miles/hour :=1;
velc2 : constant units miles/hour :=1.0;

Note that hour and hour2 have identical attributes--fact that min was an intermediate step
for hour is promptly forgotten. Likewise, vell and vel2 are identical functions of seconds
and meters with an appropriate scale factor.

velcl and velc? are number declarations, not units declarations--they are shown to make
the point that vell or vel2 may be used as synonymous with either, provided context
resoives the question of whether an integer or real is required.

In the code fragment below myalttype and mytimtype are dummy units that are indirectly
attached to myaltval, mytimval, and myclimb 10 ensure that these variables have the desired
relationship. Even if calculation of myclimb were much more complex that the simpie
assignment statement shown, myalttype and mytimtype would have 10 be propagated
correctly to compile successfully. Here we have the same effect on addition as a basic Ada
type. We have stronger protection where multiplication or division are involved--units

3-69 .

Supplement |

e

Ada 9X Revision Request 0745

4.5.5

4.6

4.10

5.2

14.

validation doesn’t stop such calculations, but operand units become attributes of the result.

myalttype : units NULL: --a private unit
myalt : units foot myalittype:

mytimtype : units Null; -- another private unit
mytim : units sec * mytimtype;

myaltval : FLOAT units myalt;

mytimval : FLOAT units mytim;

myclimb : FLOAT units myalt / mytim;
myclimb := myaltval / mytimval;

If either or both operands of a multiplying operator have units attributes, then operand type
validation is concerned only with the major classes (integer, fioat, and fixed) and the result has units
attributes derived as a function of the attributes of the operands.

Type conversions involving units attributes require that the type_mark and expression have identical
units attributes, other than scaling. If the attributes are identical except for scaling, the expression’s
numeric value will be scaled accordingly.

Adjust universal expressions consistent with 4.4.5
For assignment involving units data, assume an implied type conversion per 4.6
As with assignment, units attributes must exactly match.

But consider a function that calculates square root. It cares nothing about the exact units attributes
involved, but needs to specify that the attributes of the input parameter be the square of the
attributes of the result value.

Then consider a rate smoothing function. It accepts as input Xs and seconds and returns Xs per
second. The declaration should indicate the required relationships among the parameter units
attributes, working equally well within those requirements for X=feet, X=pounds, or X=liters.

Interactive terminal 1/O, at least, deserves units support (e.g., via TUNITS). For output this can
be used to attach a description to printed numbers; for input this can be used to specify required
units--if a length were required the operator could supply any kind of length and have intelligent
scaling applied.

3.70
Supplement |

Ada 9X Revision Requests 0244

ELABORATION RULES IN THE LANGUAGE THAT IMPACT IMPLEMENTATIONS
DATE: May 15, 1989
NAME: J. A. Edwards

ADDRESS: General Dynamics
P.O. Box 748 MZ 1746
Fort Worth, Texas 76101

TELEPHONE: (817) 763-2612
ANSIMIL-STD-1815A REFERENCE: 3.1, 38, 3.9
PROBLEM:

Because of the elaboration rules in Ada, the generated code is far bigger, i.e., less efficient, than for other
languages. There is no control for the applications writer 10 "tame" the elaboration beast. Further, the
elaboration rules often alter a dereference such that it accesses a control block and not the item. This
interferes with the ability to interface with hardware devices--it is implementation dependent on the number
of dereferences required to reach the item.

IMPORTANCE: IMPORTANT
One of the major goals for improving the language for the benefit of realtime embedded applications.

"CURRENT WORKAROUNDS:

Avoiding unsuspected elaboration through strict programming standards that (a) allows only minimal
package references by WITH, shallow nesting levels, and static structures, (b) substitutes assembler language
interfaces, and (c) supplies "special controls” to hide the true nature of the object being referenced.

POSSIBLE SOLUTION:
1. delete #4 in 3.8

2. specifically state that pre-elaboration, where recognized, should be supported. Features/attributes
may have t0 be added to the language.

i allow constant and literal items to be pre-elaborated or generated at compile time and not on every
module reference. Only access rights must be generated, the entire structure of the object does not
have to be created. It would be easy to incorporate the distinction in a constant library unit.

4. allow elaboration to occur only on a dereference and not on every Ada LRM declaration. For
example, elaboration cails would be generated for such constructs as initialization code in a package
and dynamically generated structures, but not for constant or static structures. The compilation
system should be able to rely on having a [multiple] symbol table approach for its implementation
of elaboration rules.

3.71
Supplement I

Ada 9X Revision Requests 0244

5. fix the elaboration of access types, which are not exactly subtypes, but are of the same type with
a different value, i.e. address. This eliminates the necessity for generating intermediate objects
rather than access to the object itself.

6. the elaboration of a formal part should not necessarily have to generate code.

7. specifically state that exceptions need not be raised where the compiler can recognize an erroneous
situation and handle the code generation accordingly. Other languages do not have to have
provisions for overcoming elaboration errors.

8. program errors should generate error messages at compile time and not merely generate cases for
raising exceptions later, such as at runtime. Elaborations for dynamic declarations should only occur
at runtime.

3.72
Supplement I

Ada 9X Revision Request 0321
.

ALLOW ANONYMOUS ARRAY AND RECORD TYPES
DATE: September 13, 1989
NAME: Seymour Jerome Metz

DISCLAIMER:

The views expressed in this request are those of the author, and do not necessarily reflect those of Logicon.

ADDRESS: Home: 4963 Oriskany Drive
Annandale, Virginia 22003

Office: Logicon, Inc.
2100 Washington Boulevard
Arlington, Virginia 22204-5704

TELEPHONE: Home: (703) 256-4764
Office: (703) 486-3500 Extension 2295

ANSI/MIL-STD-1815A REFERENCE: 32,37
PROBLEM:

The array and record constructs are treated differently from other type constructors, in that they are allowed
neither in an object declaration nor in a component of an array or record. Further, the fields of a record
are treated differently from object declarations, since they cannot be declared as constrained array
definitions. This nonorthogonality leads to clumsy definitions of complex records, extraneous type
definitions and hard to read programs. By violating the "law of least astonishment”, this restriction makes
the language harder to learn.

IMPORTANCE: ESSENTIAL
Regularity is compromised without this, and the design goals of Steelman and of 1.3(3) are violated:
Concern for the human programmer was also stressed during the design. ... underlying concepts

integrated in a consistent and systematic way. ... language constructs that correspond intuitively 10
what the users will normally expect.

CURRENT WORKAROUNDS: NONE
POSSIBLE SOLUTIONS:

Allow a record definition anywhere that a record type is allowed. Treat such a record definition as an
anonymous type, e.g., given

A: record

Al: integer;
A2: floay;

3.73
Supplement 1

Ada 9X Revision Request

L

0321

end record;

Al: integer;
A2: float;
end record;

A and B would have different types, making A := B invalid, but ALAl := B.Al would be valid.

Allow the components of a record to be any type or subtype that is allowed in an object declaration. Treat

any array or record specification as an anonymous type.

A: record
Al integer;
A2: float;
Al: array (1.10) of integer;
end record;
B: record
Al integer;
A2: float;
A3: array (1.10) of integer;

end record

A.A3 and B.A3 would have different types, making A.A3 := B.A3 invalid, but A.A3(5) := B.A3(5) would

be valid.
Add an additional aiternative 10 the definition of object_declaration in 3.2(9):
| identifier_list : {CONSTANT] type_definition [:=expression);
Replace
component_sudiype_indication
with
component_subtype_indication | component_type_definition
in 3.6(2), in suitable metasyntactic brackets.
Add an alternative to the definition of component_subtype_indication in 3.7(2):
| component_type_definition

with appropriate changes to the text.

3.74
Supplement I

Ada 9X Revision Requests 0243

ELABORATION OVERHEAD TOO COSTLY
DATE: June 9, 1989
NAME: Barry L. Mowday

ADDRESS: General Dynamics
P.O. Box 748 MZ 5050
Fort Worth, Texas 76101

TELEPHONE: (817) 762-3325
ANSI/MIL-STD-1815A REFERENCE: 321,14
PROBLEM:

Perhaps the single biggest drawback to Ada compilers for embedded targets is the cost of elaboration.
Resources, either memory or processing cycles, expended for elaboration take away from the resources that
would otherwise be available to implement the application. We and other people engaged in applications
for embedded computers have spent several years attempting to make Ada compilers for our targets suitable
for our applications. The Reference Manual, though, takes the singularly unhelpful position that elaboration
of objects occurs at execution time. This position is enunciated in the definition of elaboration provided
in the glossary. While we realize that the glossary is not a formal part of the standard, in this case it is
an accurate reflection of the intent stated in much more obscure language in section 3.2.1. Yet, there is
no clearly apparent benefit to deferring elaboration to runtime when it can sensibly be done either at
compilation time or at link time.

Dealing with the ramifications of runtime elaboration has cost us and many others substantial amounts of
time and money. Compiler vendors we have dealt with seem to have uniformily implemented elaboration
of all data at run time -- at least initiaily. After the needs of our applications have become known, then
implementors 1end to accept the need for elaboration prior to runtime. However, to reach that point takes
time and effort on both the part of the implementor and their customers. Runtime elaboration has
significantly held back the acceptance and utility of the language for ¢embedded computer applications.

IMPORTANCE:
Dealing with this issue is perhaps the most important contribution the 9X committee can make.

CURRENT WORKAROUNDS:

Unnecessary expenditure of significant amounts of effort to explain to compiler vendors what needs to be
done and to convince them that elaboration prior to runtime is not at odds with the intent of the language.

POSSIBLE SOLUTIONS:

Modify section 3.2.1 to state that elaboration should take place at the earliest possible time. (We realize
that not all data can be elaborated prior to execution.) Modify the glossary to be in accordance with this
new idea.

3.78
Supplement I

Ada 9X Revision Requests 0243

R o M

Since elaboration has turned out to be such a significant problem with the language, and will continue to
be at least a potentially significant problem, elaboration (and in fact the entire execution model) should be
discussed in the Language Summary section.

3-76
Supplement 1

Ada 9X Revision Requests 0246

THE MEANING OF CONSTANTS IN ADA .
DATE: May 21, 1989
NAME: J. A. Edwards

ADDRESS: General Dynamics
P.O. Box 748 MZ 1746
Fort Worth, Texas 76101

TELEPHONE: (817) 763-2612
ANSI/MIL-STD-1815A REFERENCE: 321
PROBLEM:

In Ada, CONSTANT is not necessarily static, because the programmer can use a function to compute a
constant value. It seems that such a loose definition of CONSTANT greatly hampers the ability of the
compilation system 1o recognize static data and to efficiently generate code. CONSTANT should not only
mean that the programmer is not allowed to assign a value to it, but also that it is static. We should be
able to have true static constants that can be computed at compile time and stored in read-only memory
for embedded applications. It makes no sense to "elaborate” such static or literal constructs on every entry.
No loss of capability is lost t0 a programmer by requiring that a constant object be static. The benefit
would be great.

Note #21 in the LRM reminds the implementor to treat a constant as nonstatic. This LRM wording for .
CONSTANT is another motivation for the implementor to re-elaborate every object. At a minimum for

the language change, the only expressions that should be allowable would be static or for a discriminant.

To add a restriction for a constant declaration to be static does not limit the user as discriminated and

constrained items are readily available. Other ways exist in the language 10 prohibit an assignment to

objects, e.g., limited private. The compiler should be able to recognize the difference between static and

pseudo-dynamic constants, like a static function call shown in the exampie, and produce desired efficient

code. The vendor never provides the capability out of fear of validation problems over semantics in 3.2.1

and note #21,

IMPORTANCE: IMPORTANT

Lack of ability for the compilation system to truly recognize static data leads to a large percentage of the
overhead in the applications.

CURRENT WORKAROUNDS:
None without “skirting" the limits of the language.

POSSIBLE SOLUTIONS:

Add semantics to restrict Constants to static objects.

37 @

Supplement I

Ada 9X Revision Requests 0247

‘ IMPLICIT CODE/ACTION GENERATION
DATE: May 21, 1989
NAME: J. A. Edwards

ADDRESS: General Dynamics
P.O. Box 748 MZ 1746
Fort Worth, Texas 76101

TELEPHONE: (817) 763-2612
ANSI/MIL-STD-1815A REFERENCE: 321
PROBLEM:

It is unsafe program code generation practice to implicitly take action that has not been specified by the
programmer or that is not recognizable in the source code. In the case of an elaborated object
initialization, code should not be implicitly computed, ¢.g., type access set to NULL, rather it shouid remain
undefined, incomplete. The user should be required to provide the default in the subsequent type
declaration, i.e., set it to null. Often, programmers are surprised by the effect of elaboration on their
program performance, e.g., long elaboration times and excess code generated. The maintenance problem
will exist for such implicit actions.

‘ IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS:

In programming standards, control initialization and do not allow access types 10 default. Specify defaults
in the type preset. Require the programmer to use minimum number of WITHSs and keep the initialization
sequences controlled.

POSSIBLE SOLUTIONS:

In the semantics, require access default value in the place of a NULL to be implicitly created. When no
value is given, the result should be readily identifiable but not NULL, something like the IEEE NAN for
floating point. Require the programmer to write explicit elaboration control or restate the semantics to
remove elaboration ambiguous cases.

® 278

Supplement I

Ada 9X Revision Request 053

RUNTIME CONSTANTS

DATE: October 23, 1989

NAME: UIf Olsson

ADDRESS: Bofors Electronics AB
S-175 88 Jarfalla
Sweden

TELEPHONE: +46 758 10000
+46 758 15133(fax)

ANSI/MIL-STD-1815A REFERENCE: 321

PROBLEM:

It would be very useful to have a mechanism that would allow us to declare constants that have no value
in the source code, but that are bound to values through some vendor specific method after compilation

and linking. The purpose would be to allow tuning and integration-time parametrization to take place
without tearing down and recompiling code.

IMPORTANCE: ADMINISTRATIVE
CURRENT WORKAROUNDS:
Coding of special packages that achieve the same effect by reading the values from the file system.

POSSIBLE SOLUTIONS:

3.79
Supplement I

Ada 9X Revision Requests 0248

e

THE LRV DEFINITION FOR CONSTANTS AND ELABORATION
UNN_CESSARILY DRIVES THE IMPLEMENTATIONS

DATE: May 21, 1989
NAME: J. A. Edwards

ADDRESS: General Dynamics
P.O. Box 748 MZ 1746
Fort Worth, Texas 76101

TELEPHONE: (817) 763.2612
ANSUMIL-STD-1815A REFERENCE: 32.1 p 3-5
PROBLEM:

Compiler implementors iaithfully implement the steps in 3.2.1 for every object whether the semaatic rule
is necessary or even testabic, i.e., visible that the compiler impiements the process in precisely the manner
described in the LRM. Therefore, static objects are recreated on every eiaboration and there is no way just
to reference the existing object. On searching the LRM for the basis of an elaboration requirement for
every construct on eac; occasion, three main sources exist in the language in spite of later "optimization™
wordings.

Two sources, in 3.2.1 (c¢) and (d) and again in 3.2.2 (a) and (b), direct the impiementation to elaborate
everything. A specific implementation of this elaboration method is not testable by any verification method
in an ACVC test as long cs the end results of the declarations are achieved. If the value/size/state is known
at compile time, then only the symbol table type information needs to be provided.

Tbe LRM should state the elaboration rules in BNF (Backus Naur Form) and not drive the implementation
by semantic rules. Para 10.6 allows optimization of elaboration, but few imgpiementations provide the
capability. The main fear is validation suite and the complexity of the language rules. Such semantic
complexity of the LRM is feared to contain some remote permutation of code sequences that could generate
a compiler elaboration error. Therefore, the vendors play it safe by providing littie optimization even for
pre-elaborated/known constructs.

IMPORTANCE: IMPORTANT

CURRENT WORKAROUNDS:

No vendor impiements the optimization recommendations due to this LRM definition.
POSSIBLE SOLUTIONS:

Reword page 3-5 based upon principles of inheritance rather than explicit wording that tends to proscribe
an implementation, ¢.g., "the object is created”, "any initial value is assigned". That wording is totally
unnecessary. The object “could” have already been created and initialized, then the requirement would be
to determine the effect of the declarations and references to the [existing) objects.

3.80
Supplement 1

Ada 9X Revision Request 0595

DEFAULT INITIALIZATION VALUES FOR Al . TYPES

DATE: October 19, 1989
NAME: James Lee Showalter, Technical Consultant
DISCLAIMER:

This Revision Request has been submitted to some amount of peer review by others at Rational, but it is
not an official Rational submission.

ADDRESS: Rational

3320 Scott Bivd.

Santa Clara, CA 95054-3197
TELEPHONE: (408) 496-3606 [11am-9pm]
ANSI/MIL-STD-1815A REFERENCE: 3.2.1(5-13)
PROBLEM:

Uninitialized data is unsafe. Data that is auto-initialized is guaranteed <afe, bur the only auto-initializing
type provided by the language at present is the record type:

type Safe_Record is

record
Field 1 : Natural := 0,
Field 2 : Boolean := False;
end record;

Since all other types are not auto-initializing, they are inherently more dangerous than record types.

In addition, even if a record is auto-initialized, there is no way 0 find this out (there is no attribute for
initialization)

IMPORTANCE: ESSENTIAL

This is not just a maticr of aesthetics (although it is admittedly odd that only records can be auto-
initializing): Ada .s intended to be robust and non-initialized types p<rmit non-initialized object declarations,
which are dangerous.

CURRENT WORKAROUNDS:

Some programmers are meticulous enough about initialization that they add an initialization field to their
type declarations and check this field before proceeding with operations (raising an exception of the
assertion that the object is initialized fails). Unfcrtunately, this uses addition~! space for each instance of
the type; it also makes type declarations more comp. :ated (consider a simple array type that now becomes
a record with an initialized field and the array type as two components).

3.81
Supplement I

Ada 9X Revision Request 0595

POSSIBLE SOLUTIONS:

Allow initial values to be specified for all types, not just records. Example syntax might be:

type Foo is new Integer range 1..10 :=9;

type Blip is array (1..100) of Integer := (others => 1);

type Blat is access Foo := null;

Stump : Foo; -- Already had value 9.

As with current auto-initialization of record types, explicit initialization should override default value(s):
Slump_2 : Foo := 3; -- Has constant value 3.

Allow constants of initialized types to be defined without assigning the constant:

Slump_2 : constant Foo; -- Has a constant value 9.

Add new language-defined attribute called 'INITIALIZED. This should work transitively for types with
subcomponents (as 'CONSTRAINED does now).

COMPATIBILITY:

The proposed solution is upward-compatible. All previously-compiled code will re-compile successfully and
will behave identically during execution except for possible small changes in execution speed.

3.82
Supplement 1

Ads 9X Revision Requests 0248

I

DISCRIMINANT CONTROL
DATE: May 15, 1989
NAME: J. A. Edwards

ADDRESS: General Dynamics
P.O. Box 748 MZ 1746
Fort Worth, Texas 76101

TELEPHONE: (817) 763-2612
ANSI/MIL-STD-1815A REFERENCE: 33,371,372
PROBLEM:

It is fine to have discriminated records. However, programming complexity arises from the language
definition that is not in the direction of more reliable, easily maintained software. First, the user cannot
control where the discriminant is stored. Often, for embedded systems the discriminant may be (a) internal
10 the record (a component) or (b) external and at a hardware specific memory location. Next, a
discriminant should not be allowed to “rewrite” code, e.g., alter the number/type of parameters, array
selectors, a slice, or a variable.

IMPORTANCE: IMPORTANT

CURRENT WORKAROUNDS:

Programming standards, assembly language, merge with private and generics that further hide meaning.
POSSIBLE SOLUTIONS:

1. Provide means to control where the discriminant is to be placed and add semantics to the language
to show a difference for an external and internal discriminated object. For exampie,

TYPE THING (N: INTEGER) IS
RECORD
N; --Showing internal storage for N
Other: array (1..N) of real;
END RECORD;

as well as allow a compound type statement for externally stored discriminant values:

type thing is
begin
N: integer: --force the discriminant outside the
--record and may be assigned a specific
--memory location by a USE AT clause
record thing (N); --may not follow N or even be near

3.83
Suppilement I

Ada 9X Revision Requests 0248

--the definition of record (N) may not

--be necessary
other: array (1..N) of real;
end record;
end thing,
2. Control syntax for where the discriminant can be placed. In particular disallow discriminants from
appearing in Return expressions.
3. It would be wise to use either a special symbol to identify discriminants, e.g., %N, or an attribute

of the object, e.g., '(N) or .(N). Such an indication keeps discriminated records from looking like
an array or a function. With a readily identifiable and controllable method for discriminants,
applications code maintainers would not confuse a discriminant with a formal parameter, an array
selector, a slice, or a variable.

4. Discriminants should not be aliowed to create other side-effects, e.g., change calling/return
sequences.

3.84
Supplement I

Ada 9X Revision Request 0649

DEFAULT INITIAL VALUES FOR SIMPLE TYPES
DATE: October 23, 1989
NAME: UIf Olsson
ADDRESS: Bofors Electronics AB
S-175 88 Jarfalla
Sweden

TELEPHONE: +46 758 10000
FAX: +46 758 15133

ANSI/MIL-STD-1815A REFERENCE: 33
PROBLEM:

If a type is to have an initial value, it must be a record type. This is an irritating asymmetry of the
language; simple types should have the same facility.

IMPORTANCE: ADMINISTRATIVE
CURRENT WORKAROUNDS:
Declare encapsulating records.

POSSIBLE SOLUTIONS:

3.85
Supplement 1

Ada 9X Revision Reguest 0677

EXTENSION OF INITIALIZATION CLAUSES TO SCALAR TYPES

DATE: August 3, 1989
NAME: Nicholas Baker

ADDRESS: McDonnell Douglas Electronic Systems Company
5301 Bolsa Avenue 28-1
Huatington Beach, California 92647
TELEPHONE: (714) 896-5060
ANSI/MIL-STD-1815A REFERENCE: 33
PROBLEM:

Initialization is permitted in many type declarations, and is in fact implied in access type declarations. It
is not, however, permitted in scalar type declarations. If one wishes to export a type which is a key
implemented as an integer, with a required initial value which assures it will open no locks until a privilege
has been granted, it is necessary to bracket the integer in a record. This lack of uniformity is unnatural.

IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS:
type Key is record
Content: integer := 0;
end key;
POSSIBLE SOLUTIONS:
Allow initialization clauses on scalar type declarations:
type Key is new integer := 0;

Such initializations could also be used to create such types as counters, which are conceptually initialized
to zero. Initialization to unnatural values (such as integer’first) could be used to show up errors.

3-86
Supplement 1

Ada 9X Revision Request 0350

S

IMPLICATION THAT VALUES CAN BE ASSIGNED TO TYPES
DATE: May 12, 1989
NAME: George A. Buchanan

ADDRESS: IIT Research Institute
4600 Forbes Bouievard
Lanham, MD 20706

TELEPHONE: (301) 731-8894 ext. 2063

ANSI/MIL-STD-1815A REFERENCE: 3.3(6)

PROBLEM:

Because of imprecise wording the use of (default initial)values may be misinterpreted. This is particularly
illustrated in Section 3.3, Paragraph 6, which could be misinterpreted to mean that types (rather than access
objects or record components) can be assigned vaiues.

IMPORTANCE: ADMINISTRATIVE

If this wording it not corrected, then the Ada reference manual will continue to fail to convey what its
authors really meant, thus resulting in unnecessary coding errors and compilation errors.

CURRENT WORKAROUNDS:

Hopefully readers of the Ada reference manual will correctly understand what the wording was meant to
convey despite the imprecise wording.

POSSIBLE SOLUTIONS:

In Section 3.3, Paragraph 6, if "certain types have default initial values defined for objects of the type” refers
to objects of access types, then clearly indicate this reference. Also in Section 3.3, Paragraph 6, if "certain
other types have default expressions defined for some or all of their components® refers to the components
of record types, then clearly indicate this r=ference.

3-87
Supplement I

Ada 9X Revision Request 0506

OPTIONAL DEFAULT INITIALIZATION FOR ANY USER-DEFINED TYPE
DATE: October 27, 1989
NAME: Jan Kok (on behalf of the Ada-Europe Numerics Working Group)

ADDRESS: Centrum voor Wiskunde en Informatica
P.O. Box 4079, 1009 AB Amsterdam-NL

TELEPHONE: +31 20 5924107
+31 20 5924199 (fax)
E-mail: UUCP:jankok@cwi.nl

ANSI/MIL-STD-1815A REFERENCE: 33 (6), 3.7 (5)
PROBLEM:

In general, objects of any type, in particular of any scalar type, cannot be initialized by default. They can
only be initialized explicitly in the object declaration. Currently, the only objects which can thus be
initialized by default (by adding an initial expression to the type definition) to take the same value for all
objects of their type are non-limited components of a record type. We require that objects of any type, in
particular of any scalar type, can be initialized by default by adding an initialization to the type definition.

IMPORTANCE: IMPORTANT

The current non-uniformity in the language is in conflict with the language design requirements and is likely
to cause human errofs.

CURRENT WORKAROUNDS:

Initialization in all object declarations with the danger that a changed context might make obscure a change
of the value returned by the default expression.

POSSIBLE SOLUTIONS:

In ARM 3.3.1 (2) to allow (in the syntax for type_declaration) an addition " [:= default_expression] "
where the expression is of the (sub)type given by the preceding type_definition.

3.88
Supplement I

Ada 9X Revision Request 0529

INSUFFICIENT TYPE DESCRIPTOR ACCESS
DATE: July 3, 1989
NAME: Stef Van Vlierberghe

ADDRESS: S.A OFFIS N.V.
Wetenschapstr. 10 - Bus §
1040 Brussels
Belgium

TELEPHONE: +32 2 230.75.70
ANSI/MIL-STD-1815A REFERENCE: 331
PROBLEM:

A lot of problems which can be solved once and for all by a general solution, need to be solved time and
time again in Ada because the language does not support re-usability to that extent. Good examples are
persistent objects, textual and binary sequential /O of composite types, user interface mgmt.,, SQL interface.
In all these instances a centralized solution is feasible.

The simplest example is textual output. For scalar types, textual output is supported. For array types, one
can write a generic parameters. For record types, nothing can be done to prevent the programmer from
repeating the record declaration in some other way if one stays within the language.

As a result, people tend to think about preprocessor 10 avoid this lack of reusability support. Indeed,
information duplication is not just more development effort, it is far worse since it almost guarantees
maintenance problems: a modification in the information source is likely to be forgotten in the information
duplicate.

IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS: NONE
POSSIBLE SOLUTIONS:

Extend the language to support runtime types : a package that allows read access to objects that represent
the type declarations in the source, similar to a standard interface to debugged symbol tables. Another
package then could support runtime typed objects : a limited private type that associates an address with
a type descriptor reference. This package could support a new kind of unsafe conversion:

type T_DYMANIC is limited private;

generic

type T_STATIC is limited private; -- Really any type at all.

procedure CONVERT (STATICALLY_TYPED : in out T_ STATIC:
RUNTIME_ TYPED : in out T_DYNAMIC);

The basic unsafety of this conversion would be the fact that one creates an access path to a memory

3-89
Supplement 1

Ads 9X Revision Request

0529

location that could be destroyed, hence a better solution is:

type T_DYMANIC is limited private;

--- Address of a dynamic object together with its type descriptor.

generic

type T_STATIC is limited private; -- Really any type at all.

type T_REF is access T_STATIC;

procedure CONVERT (STATICALLY_TYPED : in out T_REF;
RUNTIME_TYPED : in out T_DYNAMIC);

Which only creates an alternative (and typed!) access path to a dynamically created object.

The rest of the package should then support all type-specific operations, use of which will be checked with
the runtime type. Hence, a program might find out that a T_DYNAMIC object has a certain record type,
he can visit the record components, their names, types, and values (again of type T_DYNAMIC). For some
components it might find out that they belong to array types, find the number of indices, their type and the
component subtype, he can visit the components, find some of an integer type and get their values in an

INTEGER variable, etc...

Obviously a large effort is required to create a neat and maximally safe specification of these packages.
Compared to TEXT_IO, I would guess this will take 24 times the effort spent, but in contrast to
TEXT_IO, there is not way the programmer could implement this package himself.

3-90
Supplement 1

Ada 9X Re..sion Reques 0753

t
——— S - ——

CONSISTENT SYNTAX FOR TASK TYPE DECLARATIONS

DATE: October 19, 1989
NAME: James Lee Showalter, Technical Consultant
DISCLAIMER:

This Revision Request has been submitted to some amount of peer review by others at Rational, but it is
not an official Rational submission.

ADDRESS: Rational
3320 Scott Bivd.
Santa Clara, CA 95045-3197

TELEPHONE: (408) 496-3706 (1lam--Spm)

ANSI/MIL-STD-1815A REFERENCE: 3.3.1(2), 9.1(3, 8)

PROBLEM:

The syntax for task types is different from the syntax for ail other type declarations (including the proposed

syntax for subprogram types documented elsewhere in these submissions), making it harder to learn
(students cannot leverage off of their understanding of the syntax of other type declarations).

IMPORTANCE: IMPORTANT

Students have been known to complain that they need to memorize a special syntax for task type
declarations for no apparent reason; any such obstacle (no matter how trivial) is yet another disincentive
to learning the language.

CURRENT WORKAROUNDS: NONE
POSSIBLE SOLUTIONS:

Change the syntax of task type declarations as foliows:

type Resource is task
entry Seize;
entry Release;
end Resource;

COMPATIBILITY:

The proposed solution is non-upward-compatible. Successful re-compilation of previously-compiled code
is not guaranteed (although it is easy to fix).

391
Supplement I

Ada 9X Revision Request 0652

SUBTYPE INHERITANCE OF THE "=" OPERATOR
DATE: October 23, 1989
NAME: Ulf Olsson
ADDRESS: Bofors Electronics AB
S-175 88 Jarfalla

Sweden

TELEPHONE: +46 758 10000
+46 758 15133 (fax)

ANSI/MIL-STD-1815A REFERENCE: 332
PROBLEM:

If a subtype is declared, equality tests cannot be performed (simply) on instances of the type unless the "="
operator is renamed. Unfortunately, the operator has to be renamed from the package where the base type
was declared. This is not intuitively obvious to the Ada non-expert. (This applies to a lesser extent to the
other operators defined for scalar types).

IMPORTANCE: ESSENTIAL
CURRENT WORKAROUNDS:
Lots of renames

POSSIBLE SOLUTIONS:

Make the "=" operator automatically visible after the subtype has been declared.

3-92
Supplement 1

Ada 9X Revision Request 0437

PROVISION OF A SUPERTYPE CAPABILITY
DATE: October 3, 1989
NAME: Eric Kiem

ADDRESS: /- 3201 Meadowood Drive
Midwest City, OK 73110

TELEPHONE: 734-2457
ANSI/MIL-STD-1815A REFERENCE: 332, 35, 35.5
PROBLEM:

The Ada language provides for an existing type declaration to be split into a series of subordinate
declarations, via the subtype declaration. A Supertype declaration would permit a series of subordinate
discrcte types to be integrated to produce a higher, aggregate type declaration, with a resultant improvement
in reusability.
For example, with a base declaration of:

type Days_of_The_Week is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);)

We can extract subranges such as:

subtype Week_Days is Mon .. Fri;)
and
subtype Week Ends is Sat .. Sun; 3)

A supertype would provide the converse capability. For example, if we have base declarations of:

type Week_Days is (Mon, Tue, Wed, Thu, Fri); 4)
and
type Week_Ends is (Sat, Sun), &)

then the aggregate (supertype) would be produced by a declaration of the form of:
supertype Days_of_The_Week is (Week_Days,Week_Ends); 6)

The resultant declaration produces the equivalent of the explicit Days_of_The_Week declaration (1), but
it is based only upon the original base declarations (4) and (5).

IMPORTANCE: IMPORTANT

Without a supertype capability, otherwise reusable packages may need to be modified to provide visibility
to some all-encompassing discrete type declaration. The practice of amending reusable packages degrades
the reliability of reusable components, and therefore should be avoided wherever possible.

CURRENT WORKAROUNDS:

3-93
Supplement I

Ada 9X Revision Request 0437

Consider that we possess two packages of DATE and PERSON, with partial specifications of:
package DATE is
type Date_Type is private;
type Field_Type is (Year,Month,Day);
procedure Assign (Image : IN String;

Date : IN OUT Date_Type;
Field: IN Field_Type);

end DATE;

package PERSON is

type Person_Type is private;
type Field_Type is (SSN,Name,Address);
procedure Assign (Image : IN String;

Person : IN OUT Person_Type;
Field : IN Field_Type);

end PERSON;

Within each package, the Field_Type is used to control the target of the operations exported by each
package. Each package is reusable, because each is complete, self-contained, and independent of any specific

application.

Now, consider an apptication which requires that we construct an abstract data type which possesses
elements of both Date_Type and Person_Type. For example, we may require a membership package, which
identifies the Person, and the Date at which membership commenced. We may declare:

with PERSON:
with DATE;

package MEMBER is
type Member_Type is private;
type Field_Type is (SSN,Name,Address,Year,Month,Day);
procedure Assign(Image : IN String;

Member : IN OUT Member_Type);
Field : IN Field_Type);

3-94
Supplement 1

T R R ————————————

Ada 9X Revision Request 0437

end MEMBER;

Presumably, the MEMBER package will wish to merely re-direct each operation to the appropriate
subordinate package, according to the value of the Field parameter. However, we are faced with
determining the most appropriate implementation of MEMBER.Field_Type. A number of alternatives exist:

a. an aggregate Field_Type can be declared in a common package, from which the DATE and
PERSON packages declare appropriate subtypes.

For example:
package AGGREGATE is

type Field_Type is (SSN,Name,Address,Year,Month,Day);
end AGGREGATE;

with AGGREGATE;
package DATE is

subtype Field_Type is AGGREGATE.Year .. AGGREGATE.DAy;
end DATE,;

with AGGREGATE;
package PERSON is

subtype Field_Type is AGGREGATE.SSN .. AGGREGATE.Address;
end PERSON;
The Field_Type within MEMBER then simply becomes a subtype of AGGREGATE.Field_Type;

b. MEMBER can declare an aggregate enumerated type, and can internally "map” the
Field_Type to the corresponding subordinate enumeration literal, for example:

begin

Case F is
When MEMBER.Month => return DATE.Month;

end case;
end Date_Field_Corresponding_To;

A further possible implementation of this alternative is to calculate the correspondences based on ordinal
values and offsets within the base and aggregate declarations. This may be performed explicitly or by
instantiation of an appropriate generic.

3-95
Supplement 1

Ada 9X Revision Request 0437

Both alternatives have undesirable implications:

Alternative a. introduces an application dependency which degrades the reusability of either package.
Furthermore, a recompilation is required, which may destroy existing references to those library units, and
require drastic recompilation of entire libraries.

Alternative b. is preferable, because the reusability is retained and recompilation is avoided, but it suffers
from the manual requirement to map the enumeration literals within the aggregate Field Type to the
corresponding literals within the base declarations, with the possibility of introducing incorrect mappings.
In addition, should either base declaration change, for example by the provision of an additional Field
literal, corresponding changes will be required within the integrating package and may be overlooked.

POSSIBLE SOLUTIONS:

The proposed solution is to provide the mechanism described in alternative b. as a compiler function. That
is, the compiler has knowledge of the necessary ordinal values and offsets within the base declarations and
the aggregate declarations to automaticaily effect the necessary mappings. This implementation ensures that
the correct mappings are propagated as subordinate base declarations change, and removes the possibility
of incorrect mappings arising from manual mappings.

Presumably, the Ada language would be changed to permit a declaration of:
supertype_declaration ::=
supertype identifier is

(enumeration_type_definition {,enumeration_type_definition})

The mappings between the supertype and base type declarations would presumably be accomplished using
a modified form of type conversion (in which the appropriate offsets are subtracted, etc) such as:

DATE.Field_Type(MEMBER.Month) yields DATE.Month,
and

MEMBER.Field_Type(DATE.Month) yields MEMBER .Month.

3.96
Supplement 1

Ada 9X Revision Requests 019¢

UTILITY OF ATTRIBUTE 'BASE SHOULD BE EXPANDED
DATE: August 17, 1989
NAME: James W. McKelvey

ADDRESS: R & D Associates
P.O. Box 5158
Pasadena, CA 91107

TELEPHONE: (818) 397-7246
ANSI/MIL-STD-1815A REFERENCE: 333,9
PROBLEM: -

When writing generics, it is often necessary to define types or subtypes similar to generic formal parameters.
But this is difficult because generic actual parameters may have range constraints. Example:

type In_Integer is range <>; -- generic formal parameter
subtype In_Type is Integer range -1 .. 5; -- generic actual parameter

The actual parameter may be of any integer type, and may have any range constraints. For a given package
(say a random number generator) we need a type that is similar to In_Integer, but that allows a full range
of values; i.e., that has no constraints. We could try:

subtype X is In_Integer range - In_Integer’Last .. In_Integer’Last;
but this won’t do if the range of In_Integer is more restrictive, so try

type X is range - In_Integer’Last .. In_Integer'Last;
but this won’t do because the ranges are non-static, so try

type X is new Integer range - In_Integer’Last .. In_Integer’Last;

but this won’t do because it is non-portable due to uncertainty about what exactly is type Integer on a
particular implementation.

The only reliable solution is:

type Maximum_Integer is System.Min_Int..System.Max_Int;
subtype X is Maximum_Integer range - In_Integer’Last .. In_Integer’Last;

This is OK, as long as the largest integer type of the implementation meets all requirements. If it doesn’t
we cannot instantiate the generic on this implementation anyway.

But this solution is too conservative. It could be that the largest integer type available on the system is
excessively large and inefficient compared with the actual generic parameter.

3-97
Supplement |

Ada 9X Revision Requests 0190

IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS: As described above.
POSSIBLE SOLUTIONS:

A far better solution could be obtained if the attribute 'Base was made more general. Example:
subtype X is In_Integer'Base range - In_Integer’Last .. In_Integer’Last;

In other words, allow the 'Base attribute generally, so as to access the BASE type of a given type.

3.98
Supplement I

Ada 9X Revision Request 0694

TOPIC "=" AS A BASIC OPERATION ? .
DATE: October 23, 1989
NAME: Erhard Ploedereder

ADDRESS: Tartan Laboratories Inc.
300 Oxford Drive
Monroeville, PA 15146

TELEPHONE: (412) 856-3600

E-mail: ploedere@tartan.com
E-mail: ploedere@ajpo.sei.cmu.edu

ANSI/MIL-STD-1815A REFERENCE: 333
PROBLEM:

Very frequently, the sole cause for a "use’-clause in Ada programs is to obtain direct visibility to the equality
operation, which for all but limited types cannot be hidden by a user-provided function definition. These
'use’-clauses are detrimental to code readability and lead to potential overload resolution problems
(ambiguity rules).

The write-around of renaming equality locally is ugly and often not applied. .
Yet, the rules of the language make it completely obvious that, for non-limited types, equality can bind only
to the predefined operation, so that direct visibility of the type declaration and its implicitly declared
equality cannot possibly alter the meaning of the operation. (ARM 6.7 (4+5)). For limited types, one

could either stay with the current rule of requiring direct visibility, or one could limit the opportunity to
declare quality to the same declarative part in which the declaration of the limited type occurs.

IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS:
use clauses, renaming; none satisfactory
POSSIBLE SOLUTIONS:

It should be considered whether equality ("=", "/=") should be reclassified to be a basic operation, with a
special rule that, for limited types, the definition of "=" provides the definition of this basic operation.

3-99
Supplement I

_

Ada 9X Revision Request 0617

ELIMINATION OF ANONYMOUS ARRAY TYPES

DATE: October 19, 1989
NAME: James Lee Showalter, Technical Consultant
DISCLAIMER:

This Revision Request has been submitted to some amount of peer review by others at Rational, but it is
not an official Rational submission.

ADDRESS: Rational

3320 Scott Bivd.

Santa Clara, CA 95054-3197
TELEPHONE: (408) 496-3706[11am-9pm]
ANSI/MIL-STD-1815A REFERENCE: 335
PROBLEM;

Anonymous Array Types encourage bad programming habits. If this is a desirable goal then we should be
encouraging everyone to write in C instead of Ada.

IMPORTANCE: IMPORTANT

Anonymous Array Types should never have been allowed in the standard in the first place.
CURRENT WORKAROUNDS:

Good programming discipline, coding standards, code audits, code checking utilities.
POSSIBLE SOLUTIONS:

Eliminate Anonymous Array Types from the language.

COMPATIBILITY:

The proposed solution is non-upward-compatible. Successful recompilation of previously-compiled code is
not guaranteed. On the other hand, only badly-written code will fail to compile, so this is not great loss.

3-100
Supplement I

“

Ada 9X Revision Request 0354

PHYSICAL DATA TYPES

DATE September 18, 1989

NAME: Jehuda Ziegler

ADDRESS: ITT Avionics
Dept. 73813
390 Washington Ave.
Nutley, NJ. 07110

TELEPHONE: (201) 284-2030
ANSI/MIL-STD-1815A REFERENCE: 34, 453, 455
PROBLEM:

Ada does not define physical data types with predefined operations as allowed by the physical dimensions
that they represent. Currently these quantities can be defined as derived types of integer, real, or floating
point types or as private types with a user defined set of allowed operations.

Using derived types implies that all predefined mathematical operations (+, -, *, /, **) between two
operands of the same type are allowed and result in an output of the same type. This in general is true
for addition/subtraction of physical units (volts+volts => volts), but not for multiplication/division and
exponentiation (volts*volts /=> volts). The only way to restrict these operations is to redefine the
predefined operation with functions that raise exceptions at run time (this is not as clean as compiler
prohibited operations).

Using private types to define physical quantities eliminates these illegal operations cleanly, but eliminates
the ability to define subtypes in other packages to limit the range of the defined general physical type for
specific applications (such as the range of an instrument or the speed of an airplane).

Muitiplication/division of any physical type by any dimensionless scalar type (integer, real, and float) should
also be allowed in all situations and provide a result of the same physical type (float(3.0) * volts => volts).
Using derived or private data types will require the definitions of these operations separately for each

physical type.

The IEEE STD 1076-1987 VHSIC Hardware Description Language (VHDL) has defined physical data types
with predefined addition/subtraction, and multiplication/division by scalars.

IMPORTANCE: IMPORTANT

This would enhance the use of Ada for real world applications where operations on physical quantities are
important. It would also help Ada perform the functions now being done by special purpose languages such
as VHDL for hardware design and ATLAS for ATE applications.

CURRENT WORKAROUNDS:

A user could define all the physical types as derived types or private types as defined above, with the

3-101
Supplement I

Ada 9X Revision Request 0354

limitations described above (raising exceptions at run time for derived types, and not allowing user-defined
subtypes for private types).

POSSIBLE SOLUTIONS:

The LRM should define physical types with predefined addition/subtraction between operands of the same
type, and multiplication/division by scalars. Multiplication/division of physical types should not be allowed
by the compiler except as defined by specific application packages (this is better that raising exceptions at
run time for illegal operations).

An additional option would be to define a standard package defining all international (SI) physical data
types and the allowed set of operations between them.

REFERENCES:

IEEE Sid 1076-1987 VHDL Language Reference Manual, sections 3.1.3, 7.2.3, 7.24, and 7.2.5.

3-102
Supplement I

Ada 9X Revision Request 0369

ADA SUPPORT FOR ANSIIEEE STD 754
DATE: September 1989
NAME: Randal Leavitt (Canadian AWG #005)
ADDRESS: PRIOR Data Sciences Ltd.
240 Michael Cowpland Drive

Kanata, Ontario Canada
K2M 1P6

TELEPHONE: (613) 591-7235

ANSI/MIL-STD-1815A REFERENCE: 3.4,3.5.6,3.5.7,3.5.8,4.5.3, 454,455, 4.5.6, 4.5.7,
4.6,12.12, 12.3.3, 13.7.3, 14.3.8, 14.3.10, Appendix
C

PROBLEM:

The Ada standard does not specify an interface that can be used to write portable applied mathematics
programs. Also the Ada standard model for floating point goes not provide features defined by other widely
used floating point standards such as ANSI/IEEE Std 754-1985. These omissions hinder the development
of new programs. They also make it difficult to develop reusable

mathematical components libraries.

An important consequence of this omission is that basic functions such as square root are not tested during
compiler validation. These functions are often critically important for embedded applications, and shouid
be validated. An extensive test suite already exists for ANSI/IEEE Std 754-1985 and it could be added to
the Ada validation suite.

IMPORTANCE: ESSENTIAL
CURRENT WORKAROUNDS:

The only method available now is the brute force approach of packaging mathematical functions in some
arbitrary manner and using these packages for applications. This simplifies but does soive the portability
problem, and often causes the generation of less than optimally efficient code. For example, the code needed
for operations such as factoring out the sign, exponent, and mantissa of a floating point number must be
either totally non-portable or extremely inefficient.

POSSIBLE SOLUTIONS:

Extend the predefined Ada floating point types to bind Ada with ANSI/IEEE Std 754-1985 by adding a
predefined type FLOAT STD_754. This will provide values such as "not a number” and "infinity" for
floating point variables of this type. Some means of expressing these values as literals will be required.
Also include mandatory generic Ada interfaces for the important mathematical functions listed in the
"Proposal for Standard Mathematical Packages in Ada" by J. Kok, Report NM-R8718, 1987 and require
these generic interfaces when instantiated with the FLOAT_STD_754 type to be validated.

3-103
Supplement 1

Ada 9X Revision Request 0560

IMPROVING DERIVED TYPES
DATE: October 22, 1989
NAME: Arnold Vance

ADDRESS: Afflatus Corp.
112 Hammond Rd.
Belmont, MA 02178

TELEPHONE: (617) 489-4773
E-mail: egg@montreux.ai.mit.edu

ANSI/MIL-STD-1815A REFERENCE: 34,74

PROBLEM:

When implementing closely-related packages it is sometimes desirable to derive a private type in one
package from a private type in another package and also have access to the representation of the derived
type (only within the private part, of course). There is no way to accomplish this.

IMPORTANCE: ESSENTIAL

Derived types should be useful for layered development of packages with private types.

CURRENT WORKAROUNDS:

It is desired to have the following:

package pkgl is
type t1 is private; -- desired parent type

private
end pkgl;
with pkgl; use pkgl;
package pkg2 is
type t2 is new tl; --derived type
private
--want to be able to access representation of t2 at this point but can’t
end pkg2;

The following is an approximation of what is desired:

package pkgl is

3-104
Supplement 1

Ada 9X Revision Request

type t1 is ..., -- move full type declaration here ‘

;;ld pkgl;

with pkgl; use pkgl;

package pkg2 is
type 12 is private;

-- declare all subprograms that t2 derives in private part

private
type t2 is new tl;
end pkg2;

package body pkg2 is

-- implement all declared subprograms using conversion

end pkg2;

This solution has the unfortunate side effect of exposing the representation of t1 not just to pkg2 but to
any user of pkgl. A shell subprogram for each of the derived subprograms must be implemented using

conversion techniques.

POSSIBLE SOLUTIONS:

A proposed solution is to extend the existing mechanisms as illustrated in the following reformulation of ‘

the first example:
Package pkgl is

type t1 is private except pkg2;

private
end pkgl;

with pkgl; use pkgl;
package pkg2 is

type t2 is private new t1;

-- This says that pkg2 may have access

-- to representation of t1 if desired.

-- After ’except’ a list of package names
-- is allowed.

-- (could use ’exception’ to save keyword)

-- The interpretation is the (hypothetical)
-- union of the two statements:

-- type t2 is private;

-- type 12 is new tl;

-- The representation of t2

-- is made available only in the private part
-- but all derivable subprograms of t1 are

-- implicitly declared here ‘

3.105
Supplement I

Ada 9X Revision Request 0560

private
--may access representation of t2 at this point
--no need for shell subprograms

end pkg2;
with pkgl, use pkgl;

If pkg2 was not in the list of package names after ’except’, it is an error that should be detected when pkg2
is compiled. It should be noted that the list of packages allows the package designer to tightly control the
extent to which the representation of a type is known outside its defining package.

3-106
Supplement 1

Ada 9X Revision Request 0599

IMPROVED INHERITANCE WITRE DERIVED TYPES ‘
DATE: October 19, 1989

NAME: James Lee Showalter, Technical Consultant
DISCLAIMER:

This Revision Request has been submitted to some amount of peer review by others at Rational, but it is
not an official Rational submission.

ADDRESS: Rational
3320 Scott Bilvd.
Santa Clara, CA 95054-3197

TELEPHONE: (408) 496-3606 [11am-9pm]
ANSI/MIL-STD-1815A REFERENCE: 3.4, 7.4.2(5), 8.3(17)
PROBLEM:

Inheritance has become one of the standard attributes of modern object-oriented programming languages

(such as C++ and Smalltaik-80). Unfortunately, Ada is quite deficient in its support for inheritance (it

is based primarily on derived types, and then not particularly well), and this is a valid criticism leveled at

the language by critics (and C bigots who, if forced to learn a new language, simply prefer to learn C++). '
There are currently many proposals to add full-blown inheritance (and other standard object-oriented
attributes, such as polymorphism) to Ada; the scope of this revision request is much more modest, intended

only to make the derived type mechanisms that already exist work better.

IMPORTANCE: ESSENTIAL

If the lack of modern object-oriented attributes is not addressed in Ada 9X, Ada will almost certainly
become the FORTRAN of the *90’s.

CURRENT WORKAROUNDS:
Be thankful for what limited object-oriented support is offered by the current language.
POSSIBLE SOLUTIONS:

To start with, consider the following situation:
package Some_Package is
type Some_Type is private;
function Some_Function (On_This . in Some_Type)

return Boolean;
procedure Some_Procedure (On_This : in out Some_Type); .

3-107
Supplement I

Ada 9X Revision Request 0599

private
end Some_Package;

with Some_Package;
package Another_Package is

type Another_Type is private;

function Another_Function (On_This : in Another_Type)
return Boolean;
procedure Another_Procedure (On_This : in out Another_Type);

private
type Another_Type is new Some_Package.Some_Type;
end Another_Class;

The way the language is currently defined, the declarations of Some_Function and Some_Procedure in
Another_Package hide the implicit declarations of operations by the same names (and with the same
parameter profiles) that were inherited by the type derivation of Another_Type. Now, in order to
implement Some_Function and Some_Procedure in the body of Another_Package it is necessary to coerce
the types back to the base type:

package body Another_Package is

function Some_Function (On_This : Another_Type) return Boolean is
begin
return Another_Type
(Some_Package.Some_Function
(Some_Package.Some_Type (On_This)));
end Some_Function;
procedure Some_Function (On_This : Another_Type) is

Some_Local : Some_Package.Some_Type :=
Some_Package.Some_Type (On_This);
begin
Some_Package.Some_Procedure (Some Local);
On_This := Another_Type (Some_Local);
end Some_Procedure;

end Another_Package

This is completely backwards from the way inheritance is supposed to work. For proper inheritance, only
in the case where the programmer wants to explicitly override an inherited operation should the programmer
have to do any work at all. Thus, the way the language should work in the above case is that at the point
that Another_Type is derived, the operations Some_Function and Some_Procedure defined in
Another_Package package spec should be considered already implemented, and, in fact, it should not even

3-108
Supplement I

Ada 9X Revision Request 0599

be necessary to create a package body for Another_Package: the programmer is done.!

Now, consider the case where the programmer does, in fact, want to override one of the operations.In that
case, the programmer would need to create a body for Another_Package, but would only need to fill it in
with the operation that is to be overridden:

package body Another_Package is

function Some_Function (On_This : Another_Type) return Boolean is

begin
[do something new here]
end Some_Function;

end Another_Function;
Notice that Some_Procedure does not have to be implemented, because it is already implicitly obtained from
direct inheritance. Only the operation that the programmer wants to override needs to appear in the
package body. This is the way inheritance is supposed to work.
Now consider the case where the programmer wants to directly inherit operations but change their names:
package Some_Package is

type Some_Type is private;

function Some_Function (On_This : in Some_Type)

return Boolean;

procedure Some_Procedure (On_This : in out Some_Type);

private

end Some_Package;

with Some_Package;
package Another_Package is

type Another_Type is private;

function My_Function (On_This : in Another_Type)
return Boolean;

procedure My_Procedure (On_This : in out Another_Type);

private

type Another_Type is new Some_Package.Some_Type;

If leaving the body non-existent is to indeterminate, it
would be acceptable to this author to require the programmer to at
least compile a null body for the package in order to indicate that
it is indeed intended to be implemented entirely by inheritance.

3-109
Supplement I

Ada 9X Revision Request 0599

end Another_Class;

When it comes time to implement the body of Another_Package (which is now required because the
operations that are inherited do not exactly match the operations that are declared, because the names are
different), it should be possible to do so via simple renaming of the inherited operations:

package body Another_Package is

function My_Function (On_This : in Another_Type) return Boolean
renames Some_Function;

function My_Procedure (On_This : in out Another_Type)
renames Some_Procedure;

end Another_Package;

This is very nice because it eliminates the run-time overhead of a call to what would just be a "skin" anyway
(of course, if the programmer wants to override the defauit implementation, that is certainly possible as
well). It should also be possible to use this same strategy to implement operations that are the same as
the derived operations except for different default values for parameters (as is already possible with
renames).’

Note: It should be pointed out that nothing above is meant to imply that operations defined in a package
spec that do not match any derived operations do not have to be implemented by the programmer: it is
certainly true that--if Another_Package defined a brand new operation called Brand_New_Operation that
had a parameter profile unlike either of the two inheritable operations defined in Some_Package--this new
operation would have to be implemented in the body of Another_Package. This of course consistent with
the way inheritance is supposed to work (the programmer can subset, superset, or merely duplicate the
operations inherited from the parent).

Assuming all of the above is fixed, the one other gross deficiency in the current standard with respect to
its support for inheritance via derived types is that generic subprograms are not inheritable [LRM 3.4 (20)].
This automatic subsetting of inheritable operations to exclude generics is a wretched restriction, since it is
exactly the interaction of generics with inheritance properties that shows the most promise in at least
emulating polymorphism. Recommended solution: relax this restriction so that generic subprograms are
inheritable.

COMPATIBILITY:
Oddly enough, all of the above proposed changes are upward-compatible. All previously-compiled code will

recompile successfully and will behave identically during execution except for possible small changes in
execution speed.

’There is no reason why the ability to implement functions and
procedures declared in package specs by renaming in the package
body should be restricted to derived types; it should be possible
to do in any case where the renaming rules are not violated, since
the elimination of run-time overhead and skin operations is always
desirable.

3.110
Supplement 1

Ada 9X Revision Request 0482

PROVIDE EXPLICIT SUBPROGRAM DERIVATION
DATE: October 23, 1989
NAME: Allan R. Klumpp

ADDRESS: Jet Propulsion Laboratory
4800 Oak Grove Drive
Mail Stop 301-125L
Pasadena, CAL 91109

TELEPHONE: 818-354-3892
FTS 792-3892
Internet: KLUMPP@JPLGP.JPLNASA.GOV
Telemail: KLUMPP/J.P.L.

ANSI/MIL-STD-1815A REFERENCE: 34.11
ALIWG ACTION: Favorable vote 1987 in Boston, tie vote 1988 in Charleston, W.V,
PROBLEM:

When a subprogram has multiple parameter and/or result types from which multiple new types are
subsequently derived, the only subprograms that are derived are those that differ from the original
subprogram in exactly one parameter or result type. None of the derived subprograms is usable in the
normal manner.

Example

PACKAGE VECTOR_MATRIX IS
TYPE VECTOR IS ARRAY(INTEGER RANGE <>) OF FLOAT;
TYPE MATRIX IS ARRAY(INTEGER RANGE <>, INTEGER RANGE < >) OF FLOAT;

FUNCTION "*" (LEFT: VECTOR; RIGHT: MATRIX) RETURN VECTOR;
END VECTOR_MATRIX; -- End Spec

WITH VECTOR_MATRIX; USE VECTOR_MATRIX;
PACKAGE QUATERNION IS

TYPE QUAT IS NEW VECTOR(O .. 3);

TYPE ROT_QUAT IS NEW MATRIX(0 .. 3, 0 .. 3);
END QUATERNION; -- End Spec

The product function "*" is derived twice. One derived function takes QUAT and MATRIX parameter
types and returns a QUAT type. The other derived function takes VECTOR and ROT_QUAT parameter
types and returns a VECTOR type. Neither derived function is usable in the normal manner, i.e., as
follows:

QUAT_A, QUAT B: QUAT;
ROT_QUAT B A: ROT_QUAT;
BEGIN

3-111
Supplement 1

Ada 9X Revision Request 0482

QUAT_B := QUAT_A * ROT_QUAT B_A;
IMPORTANCE: IMPORTANT

CURRENT WORKAROUNDS:

Make the subprogram generic with the generic formal parameters being the parent types. Then
instantiate the subprogram for the derived types. This workaround is often unsatisfactory because other
subprograms call the subprogram in question. In such cases, a second, nongeneric, subprogram must be
provided to satisfy the callers.

POSSIBLE SOLUTIONS:

The language should enable the applications program to declare derived subprograms, naming the derived
types they use. (For compatibility with existing software, those derived subprograms the language supplies
implicitly should continue to be supplied.) Here is a deriving declaration with which an applications
program could declare derived subprograms.

Deriving_declaration ::=
subprogram_specification is new subprogram_specification;

Using the deriving declaration, the quaternion product function in the example could be declared by:

FUNCTION ™" (LEFT: QUAT, RIGHT: ROT_QUAT) RETURN QUAT IS NEW
FUNCTION "*" (LEFT: VECTOR; RIGHT: MATRIX) RETURN VECTOR;

The right-hand subprogram_specification disambiguates the deriving declaration. Disambiguation is
necessary because more than one parent subprogram could be implied by the left-hand
subprogram_specification and there may be no other way to distinguish among the possible parents.

Additional rationale on disambiguation and possible wording for the Ada 9X LRM are available on request.

3-112
Supplement I

Ada 9X Revision Requests 0230
SCALAR TYPE DEFAULTS C)

DATE: July 21, 1989

NAME: Anthony Elliott, from material discussed with the Ada Europe Reuse Working Group and

members of Ada UK.

ADDRESS: IPSYS pic
Marlborough Court
Pickford Street
Macclesfield
Cheshire SK11 6JD
United Kingdom

TELEPHONE: +44 (625) 616722
ANSI/MIL-STD-1815A REFERENCE: 35
PROBLEM:

In some situations it is necessary to ensure that all objects of a particular type have a default initial value.
This can only ve achieved through the use of a record type definition, in which the components have default
values, or through the use of an access type, which results in a default value of null. It is not possible to
associate default initial values with other type definitions.

IMPORTANCE: IMPORTANT .
To avoid unnecessarily contorted type definitions.

CURRENT WORKAROUNDS:

For some situations the use of record or access types may be a natural solution.

For situations where the properties of a scalar type are required, the obvious workaround is to declare the
type as a record thus:

type LIKE _scalar is
record
VALUE : scalar := default;
end record;

Other workarounds rely on the user of the type to make some explicit initialization, or to call some
initializing procedure associated with the type.

POSSIBLE SOLUTIONS:

Allow default expressions for enumeration, integer, and real type definitions and array and derived type
definitions thereof.

3-113
Supplement 1

w—

Ada 9X Revision Requests 0230

‘ As an example:

type STATUS is (IDLE ,ACTIVE) := IDLE;
type INDEX is new INTEGER := -1;

3-114
Supplement I

"—___',r

Ada 9X Revision Requests 0234
RESTRICT NULL RANGES .
[DATE: March 20, 1989
NAME: J A Clare (endorsed by Ada UK and Ada-Europe)
ADDRESS: ICL Defence Systems
Eskdale Road
Winnersh
Wokingham

Berkshire RG11 STT
United Kingdom

TELEPHONE: +44 734 693131

ANSI/MIL-STD-1815SA REFERENCE: 35, 36.1
PROBLEM:

Null ranges R such that R'LAST < R’FIRST-1 (herein referred to as "sub-null" ranges) are somewhat
anomalous, particularly when used as index constraints. For arrays with such constraints the LENGTH
attribute is not given by the normal formula of LAST - FIRST + 1. This causes significant overheads for
the common case of an index constraint with at least one dynamic bound, particularly for a machine with
hardware index checking based on lower bound and length. .

As it is hard to imagine a good, sensible use of arrays with subnull index constraints, it seems wrong that
such an overhead should be imposed on arrays generally.

IMPORTANCE:
CURRENT WORKAROUNDS: Not applicable
POSSIBLE SOLUTIONS:

The most radical solution is to require the evaluation of a subnull range to raise CONSTRAINT ERROR.
This would however put overheads on some loop statements, for example.

A less radical solution would be to require the use of sub-null ranges as index constraints raise
CONSTRAINT ERROR.

A partial solution would be to redefine the LAST attribute for all nuil arrays and types to be FIRST-1, to

avoid the necessity of passing the upper bound about (e.g. with an array actual parameter where the formal
parameter is unconstrained), just for the purpose of evaluating this attribute.

3-115
Supplement I

N

Ada 9X Revision Requests 0250

NULL SPECIFICATION FOR NULL RANGES AND RAISING
EXCEPTIONS ON NULL RANGE ASSIGNMENT ERRORS

DATE: June 9, 1989
NAME: J. A. Edwards

ADDRESS: General Dynamics
P.O. Box 748 MZ 1746
Fort Worth, Texas 76101

TELEPHONE: (817) 763-2612
ANSI/MIL-STD-1815A REFERENCE: 35, 432 #14
PROBLEM:

Ada should have a better notation for indicating a null range, e.g., STRING (null):=null; rather than be
writing constructs that appear to do something other than a null range, e.g., X(1..0). For ranges that the
lower bound is greater than the upper bound, the programmer should get an error if the object is static and
the code should raise an exception for the dynamic case. Erroneous constructs that appear to be correct
code are just too easy to overlook in a large scale development. The attributes for null ranges need to be
consistently defined--and not raise exceptions, e.g.,, FIRST=LAST=LENGTH= >0, regardless of the range
expressed, 1..0 or -2..-3.

A problem exists with the example on 4.3.2 #14 with the comment "in particular, for N=0". The intent

of the statement is not clear as to the number of cells being created. A reasonable user could intuit that
either 0, 1, or 2 cells are created or that an error is generated.

IMPORTANCE: IMPORTANT

Program maintenance is 40% of costs of large scale weapons systems. The language should not allow
constructs that appear to be wrong, i.e., the null range cases.

CURRENT WORKAROUNDS:
In programming standards, do not allow null strings, ranges, or components.

POSSIBLE SOLUTIONS:

Improve the method for expressing null ranges, e.g., "Null" attribute, rather than create error conditions to
be raised at runtime.

3-116
Supplement I

Ada 9X Revision Request 0389

INCONVENIENT HANDLING OF SCALAR TYPES THAT ARE CYCLIC IN NATURE ‘
DATE: September 25, 1989
NAME: Stephen J. Wersan, Ph.D.

ADDRESS: Code 3561
NAVWPNCEN
China Lake, CA 93555
TELEPHONE: (619) 939-3120,

Autovon 437-3120
E-mail: WERSAN%356VAX.DECNET2NWC.NAVY MIL

ANSI/MIL-STD-1815A REFERENCE: 35
PROBLEM:

Inconvenient handling of scalar types that are cyclic in nature.

IMPORTANCE: IMPORTANT

Cyclic types arise in many areas. Two important examples are types used to deal with time and compass

direction (azimuth). Some of the messy trivia arising in the embedded world concerns handling such types ‘

represented by roll-over counters, and the like. This is probably closely related to unsigncd integer types,
and anything done in this area should mesh with what Ada 9X does there.

CURRENT WORKAROUNDS:
The use of the pred and succ attributes must be avoided. Special functions must be written to replace them.
POSSIBLE SOLUTIONS:
Extend the declaration of a scalar type to include the optional word "cyclic." Example:
type DAY is cyclic (SUN, MON, TUE, .., SAT);
Having done so, the meanings of the attributes succ, pred and val would be altered so that
DAY’succ(SAT) = SUN and DAY pred(SUN) = SAT
while DAY'val(9) = DAY'val(9 mod 7) = TUE.

The attributes first, last and pos would continue to refer to the declaration ordering of the members
of the type.

In the embedded world, users of cyclic type will want to be informed when rollover or underflow
occur. A predefined exception should be introduced for this purpose.

3-117
Supplement 1

e ——————————————————————————————————

Ada 9X Revision Requests 0220

ENUMERATION LITERAL INTEGER CODES
DATE: June 15, 1989
NAME: Mike McNair
ADDRESS: Link Flight Simulation Division of CAE-Link Corporation
1077 E. Arques Avenue
Sunnyvale, CA 94088-3484

TELEPHONE: (408) 720-5871
ANSI/MIL-STD-1815A REFERENCE: 351, 133

PROBLEM:

Once an Enumeration literal to integer code mapping has been established via an enumeration-
representation-clause, there is no portable provision for retrieving the codes.

IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS:

None that are guaranteed to be portable.
e.g. type colors is (Red, White, Blue);
for colors use (3,7,9);
function convert is new Unchecked_Conversion(Colors,Integer);

Note that "Convert" allows the code retrieval.
POSSIBLE SOLUTIONS:

Include an attribute of enumeration types, "Code" as : Colors’Code(Red). This would evaluate to 3. If
there is not representation clause, then the returned value would default to the position number, e.g.,
Color'Code(Red) would give 0.

3-118
Supplement I

Ada 9X Revision Requests 0249

ATTRIBUTES FIRST AND LAST FOR
NULL RANGES ARE DEFINED RATHER ODDLY

DATE: June 12, 1989
NAME: Barry L. Mowday

ADDRESS: General Dynamics
P.O. Box 748 MZ 5050
Fort Worth, Texas 76101

TELEPHONE: (817) 762-3325
ANSIMIL-STD-1815A REFERENCE: 3.5:3.4, 362
PROBLEM:

We use the 'Picture 9’ example in the Dear Ada column in the ACM’s Ada Letters publication -- May/June
1989 edition --to illustrate this similar but really different problem. There are internal inconsistencies in
the definitions of ’first and ’last and ’length for null ranges.

Given:
function Ic (S : string) return String is
I : Positive := S’First ...

With the string declaration x : string(1..10); constraint error is raised on a call like 1c(x(-1)); the exception
is raised on the attempt to assign the attribute S’first to a positive variable.

x(-1..~7) is a null string; its lower bound is greater than its upper bound. The number of elements in this
string is zero.

We have no complaints so far. X(-1..-7) first is -1,
’last is -7 and
"length is 0.

What we have is a language in which ’last - ’first + 1 = ’length cannot be asserted to be true, not even
limiting one’s attention to those cases in which arithmetic exceptions are not raised. This is odd. This
oddity is at least alluded to within the language definition -- irside a parenthetical statement within a note
section, 3.6.2:14.

Another observation that strikes us as odd is that the attributes ’first and ’last of null ranges are not going
to yield the same results in general. x(-1..-7)’last /= x(-2..-3)last, even though both ranges are null.

The problem in the Ada Letters example arises because the virtual programmer assumed that 'first would
always return a legal value of the type that is declared to be the index type of the array.

It should in fact be reasonable to assume that situations resembling

type t is array (positive range <>) of character;
x : t(lb..ub);

3-119
Supplement 1

Ada 9X Revision Requests 0249

1 : positive := x'first

are not going to raise problems of the sort noted in the Ada Letters column. Yet our Ada language
definition has problems here. The problem is not in the virtual programmer; the problem is in the language
definition.

IMPORTANCE: IMPORTANT
Glitches like this contribute to the language’s well-deserved idiosyncratic reputation.
CURRENT WORKAROUNDS:

In the Ada Letters example, change the type of I to integer; in the general case, reduce the amount of range
checking done.

POSSIBLE SOLUTIONS:

The fix for the situation noted in the Ada Letters column is to fix the statement in 3.5:4 that allows
checking for range compatibility to be postponed until attributes are used. But that doesn’t address the
issues dealing with the relationship of ’first, 'last, and ’length nor the unpredictable values for ’first and ’last
of null ranges.

One should really consider changing the definition of ’first and last for null ranges. We can believe that
this definition was made to allow compilers to be more easily implemented; if so, we appreciate the
sentiment. What one might really want instead, though, is for 'first and ’last to return for null ranges a
constant that serves the same purpose for discrete types as null does for access types. Much like the idea
of NaN in the IEEE floating point standard.

An intermediate level solution might be for 'first and ’last to raise an exception when used with null ranges;
we suspect that would be worse than the current situation, though.

3-120
Supplement 1

Ada 9X Revision Request 0365

IMPLEMENTATION OPTIONS LEAD TO NON-PORTABILITY
AND NON-REUSABILITY (I)

DATE: September 21, 1989
NAME: Ivan B. Cvar (Canadian AWG #001)

ADDRESS: PRIOR Data Sciences Ltd.
240 Michael Cowpland Drive,
Kanata, Ontario, Canada,
K2ZM IP6 -

TELEPHONE: (613) 591-7235

ANSI/MIL-STD-1815A REFERENCE: 354, 35.7, 103.9, 13.7.2, 3.8, 4.1.4, 13.1, 2.8, 13.9, 104,
10.1, 10.6, 3.2.1, 1.6

PROBLEM:

Implementation Options Lead to Non-Portability and Non-Reusability.

DISCUSSION:

The LRM allows many implementation options and this freedom has lead to numerous "dialects” of Ada.
As programs are written to rely on the characteristics of a given implementation, non-portable Ada code
results. Often, the programmer is not even aware that the code is non-portable, because implementation

differences amy even exist for the predefined language features. Further, it is sometimes not impossible to
compile an Ada program with two different implementations of the same vendor’s compiler.

Another kind of non-portability is that of the programmer’s skills, The user interfaces to Ada compilers
have become so varied that programmers find it very difficult to move from one Ada implementation to

another, Not only does the command line syntax vary, but so do program library structures, library
shareability between users, compiler capabilities, capacity limits. etc.

IMPORTANCE: ESSENTIAL

CURRENT WORKAROUNDS:

Significant amounts of code rewriting, recompilation, and testing must be done to get a given Ada program
to compile and to run successfully using another compiler, if at all possible, even on the same host-target
configuration. It is very difficult to write a truly portable Ada program.

Another possible solution to porting an Ada program is for a customer to carefully choose a compiler to
suit the given Ada program, or perhaps collaborate with a vendor to tailor the compiler to suit these needs.

Significant amounts of programmer retraining must occur when a different Ada compiler is used.

POSSIBLE SOLUTIONS:

3-121
Supplement I

Ada 9X Revision Request 0365

Disallow or severely limit the number of allowed implementation options. The LRM should be changed
to mandate more requirements that must be met by all implementations, and where freedoms are still
allowed, restrict the impiementation choices to a limited set of choices.

REQUIREMENTS:

LRM Reference

.............

1. LRM 354

2. LRM 354

3. LRM 3.5.7

4. LRM 103.9

5. LRM 13.7.2

6. LRM 13.7.2

7. LRM 38

8. LRM 4.14

9. LRM 13.1

10. LRM 2.8

11. LRM 13.9

12. LRM 104

Description

The number of bits used to represent the predefined type INTEGER must be
defined by the programmer of by the LRM, rather than being left to the
implementation.

Every implementation should be required to support both SHORT_INTEGER and
LONG_INTEGER, with the bit sizes specified by the programmer or by the LRM.

Every implementation should be required to support both SHORT_FLOAT and
LONG_FLOAT, with the bit sizes specified by the programmer or by the LRM.

Separate compilation of generic specifications and bodies must be made mandatory.
Implementations should not be allowed to impose a restriction that the generic body
be compiled along with the specification.

The meaning of attribute ’”ADDRESS must be clarified. For example, when applied
to a program unit, the LRM must specify whether it refers to the program unit’s
entry point or the lowest (or highest) memory location occupied by the unit.

The meaning of attribute 'SIZE must be clarified. For example, when applied to
a type, the LRM must specify whether it refers to the minimum or to the actual
number of bits used by the implementation to store a value of the type. When
specified in a representation clause, the LRM should specify whether an
implementation must use the stated "upper Bound” or whether it may ignore the
representation clause and use a smaller size.

The language must specify the relationship between access types and types
SYSTEM.ADDRESS.

The language must specify some common set of predefined attributes and not allow
implementors to arbitrarily invent more new ones that can be used to circumvent
the Ada rules.

All representation clauses must be made mandatory, and fully defined.

All predefined pragmas must be made mandatory, and fully defined.

Pragma INTERFACE must be extended to allow the calling conventions (i.e. object
format and other parameters) to be specified, or perhaps some other general

mechanisms that would allow Ada to interface to other non-Ada components.

The program library structure should be standardized.

3-122
Supplement 1

Ada 9X Revision Request 0365

13. LRM 104

14. LRM 10.1

15. LRM 101

16. LRM 10.6

17. LRM 3.2.1.

18. LRM 1.6

19. LRM 1.6
20.
21.

22.

The packages provided, or allowed, in the runtime support library should be defined
by the LRM to remove the wide variations between implementations.

The command line syntax, or a set of standardized compiler switches should be
mandated, to control debug status, code optimization, conditional compilation,
or other requirements.

The LRM should clarify the meaning of a main program and how it relates other
library units as well as to the so-called environment task that invokes it, as well as
to other tasks in the environment.

The elimination of dead code, uncalled procedures, unused data, and the
optimization performed must ail be reported, and in a uniform manner.

The detection and use of uninitialized variables must be standardized in the LRM
to result in warning messages at compile time.

Whenever an implementation chooses to ignore a portion of the program (eg. a
pragma, representation clause, etc.), the implementation should be required to
report a warning message.

The LRM should define a standardized set of error messages.

(New) If it is impossible to remove all implementation options from the language,
the ALRM should have a consolidated list of those optional areas. It should also
be required that compiler vendors report the exact interpretation of these options.
Appendix F lists the Implementation Dependant Characteristics but it is not
complete. This appendix shoufWebe extended to include an entry for every
remaining use of the phrases:

a) implementation dependent
b) machine dependent

¢) system dependent

d) undefined

€) not defined

f) not required

g) may

3-123
Supplement I

Ada 9X Revision Request 0432

IMPLEMENTATION OPTIONS LEAD TO NON-PORTABILITY
AND NON-REUSABILITY (II)

DATE: October 1, 1989
NAME: Ivan B. Cvar (Canadian Ad Working Group)

ADDRESS: PRIOR Data Sciences Ltd.,
240 Michael Cowpland Drive,
Kanata, Ontario, Canada,
K2M 1P6

TELEPHONE: (613) 591-7235

ANSI/MIL-STD-1815A REFERENCE: 354,357, 103.9, 13.7.2, 13.2, 13.8, 14.1.4, 13.1, 2.8, 11.7,
13.9, 104, 10.1, 10.6, 1.6, 3.2.1, 9.6

PROBLEM:

Compiler implementation options lead to non-portability and non-reusability of Ada code. The language
allows many implementation options and this freedom has lead to numerous "dialects” of Ada. As programs
are written to rely on the characteristics of a given implementation, non-portable Ada code resuits. Often,
the programmer is not even aware that the code is non-portable, because implementation differences may
even exist for the predefined language features. Further, it is sometimes not possible to compile an Ada
program with two different implementations of the same vendor’s compiler.

Another kind of non-portability is that of the programmer’s skills. The user interfaces to Ada compilers
have become so varied that programmers fin'. it very difficult to move from one Ada implementation to
another. Not only does the command line syntax vary, but so do program library structures, library
shareability between users, compiler capabilities, capacity limits, etc.

IMPORTANCE: ESSENTIAL
CURRENT WORKAROUNDS:

The use of non-portable predefined types, pragmas, attributes, representation clauses, etc. must be avoided,
if possible.

Significant amounts of code rewriting, recompilation, and testing must be done to get a given Ada program
to compile and to run successfully using another Ada compiler. In some circumstances it may not be
possible, even on the same host-target configuration. It is very difficult to write a truly portable Ada
program.

Another possible workaround to porting an Ada program is for a customer to carefully choose a compiler
to suit a particular Ada program, or perhaps collaborate with a vendor to tailor the compiler to suit the
current needs.

In some cases, significant amounts of programmer retraining must occur when using a different Ada
compiler from another vendor.

3-124
Supplement I

Ada 9X Revision Request 0432

POSSIBLE SOLUTIONS:

Disallow or severely limit the number of allowed implementation options. The LRM must be changed to
mandate more requirements that must be met by all implementations, and where freedoms are still allowed,
restrict the implementation choices to a limited set of choices.

Samples of such implementation options and their possible solutions follows:
ITEM LRM REFERENCE DESCRIPTION

1. LRM 354 The number of bits used for type INTEGER must be either defined by the
language, or must be definable by the programmer, rather than being left
to the implementation. Perhaps a representation clause that allows the
programmer to specify the exact 'SIZE or the 'MIN_SIZE in bits.

2. LRM 354 The predefined types SHORT_INTEGER and LONG_INTEGER must be
supported by all implementations. Also, the number of bits used for type
SHORT-INTEGER and LONG_INTEGER must be either defined by the
language,or must be definable by the programmer, rather than being left
to the implementation. Perhaps a representation clause that aliows the
programmer to specify the exact 'SIZE or the 'MIN-SIZE in bits.

3. LRM 3.5.7 The predefined types SHORT FLOAT and LONG_FLOAT must be
supported by all implementations. Also, the number of bits used for type
SHORT_FLOAT and LONG_FLOAT must be either defined by the
language, or must be definable by the programmer, rather than being left
to the implementation. Perhaps a representation clause that allows the
programmer to specify the exact 'SIZE or the 'MIN SIZE in bits.

4. LRM 10.3.9 Separate compilation of generic specifications, bodies,and subunits must be
made mandatory for all implementations. Implementations must not be
allowed to impose a restriction that the generic body or its subunits be
compiled along with the generic specification.

5. LRM 13.7.2 The meaning of attribute ’ADDRESS must be clarified. For example, when
applied to a program unit, the LRM must specify whether it refers to the
program unit’s entry point or to the lowest (or highest) memory location
occupied by the unit. In particular, when applied to a subprogram, the
attribute must yield the address of the subprogram’s entry point.

6. LRM 13.7.2

and 13.2 The meaning of attribute 'SIZE must be clarified. For example, when
applied to a type, and the LRM must specify whether it refers to some
minimum or the actual number of bits used by the implementation to store
a value of the type. Also, when specified in a length clause, the LRM must
specify whether an implementation must use the stated "upper bound" as
the actual size or whether it may ignore programmer’s length clause and
use a smaller size.

3.125
Supplement I

Ada 9X Revision Request

0432

10.

11.

12.

13.
14.

15.

16.

LRM 38
and 13.7

LRM 4.4.4

LRM 13.1

LRM 28
and 11.7

LRM 139

LRM 104

LRM 10.4

LRM 10.1

LRM 10.6

LRM 1.6

The language must specify the relationship between access types and type
SYSTEM.ADDRESS. Thus, the effect of passing an access type or doing
an Unchecked_Conversion between these two types would be guaranteed,
particularly when interfacing to another language, like assembly language.

The language must specify some common set of predefined attributes, and
not allow implementors to arbitrarily invent more new ones that can be
used to circumvent the Ada rules.

All implementations must be required to support all representation clauses,
and they must be fully defined.

All implementations must be required to support all predefined pragmas,
and they must be fully defined.

For example, the effect of pragma SUPPRESS must be defined to specify
whether it precludes the inclusion of ADDITIONAL object code to perform
the required checks; or whether it prohibits the check for the error
condition as well as prohibiting the raising of the exception; or whether it
just prohibits the detection of the exception (perhaps at the hardware level).

In certain real time applications, exceptions can be safely ignored (due to
the self-correcting nature of feedback loops). Processing constraints may
make it undesirable to raise an exception, even if it is ignored. In this case,
pragma SUPPRESS (or a similar pragma) must be defined to eliminate the
possibility of ever raising an exception.

Pragma INTERFACE must be extended to allow the calling conventions
(that is, object format and other parameters) to be specified, or perhaps
some other general mechanism could be provided to allow an Ada program
to interface to other non-Ada components written in a language unknown
or not supported by the implementation.

The LRM mandates the presence of a program library, but does not define
its structure or its interface. These must be standardized.

The packages that are provided, or allowed, in the runtime support library
must be defined by the LRM to remove the wide variations between
implementations.

The language must clarify the meaning of a main program and how it
relates other library units as well as to the so-called environment task that
invokes it, and to the other tasks in the environment.

The elimination of dead code, uncalled procedures, unused data, and the
optimization performed must all be reported by an implementation, perhaps
in response to a pragma.

Whenever an implementation chooses to ignore a portion of the program

3-126
Supplement I

Ada 9X Revision Request

"‘

0432

18.

17,

LRM 321

LRM 9.6

(for example, a pragma, representation clause, etc.), the implementation
must be required to report a warning message.

The detection and use of un-initialized variables must be standardized in
the language to result in warning messages at compile time.

The language must specify whether a delay statement with a zero value
either allows, or forces, scheduling to occur.

3-127
Supplement 1

Ada 9X Revision Request 0433

UNSIGNED INTEGER TYPES
DATE: October 1, 1989
NAME: Ivan B. Cvar, Canadian Ada Working Group

ADDRESS: PRIOR Data Sciences Ltd.,
240 Michael Cowpland Drive,
Kanata, Ontario, Canada
K2M 1P6

TELEPHONE: (613) 591-7235
ANSI/MIL-STD-1815A REFERENCE: 354
PROBLEM:

There is a need for predefined unsigned integer types that use all of the bits of the type. The predefined
integer types of size n bits cannot be used to represent values in the range 2**(n-1)..(2**n)-1 because they
must be symmetrical about zero, thus requiring a sign bit. Also, attempts to assign a large positive value
exceeding 2**(n-1)-1 to a variable of the type will raise an exception.

This need arises particularly when performing hardware address calculations or other numeric operations
on non-negative data which occupies the full bit width of the type.

IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS:

In some implementations, an integer type with a larger number of bits may be used, if one is available.
Otherwise, pragma INTERFACE to another language may be used.

Enumeration types may be used in some circumstances, but algorithms do not always lend themselves to
the operators available for enumeration types.

POSSIBLE SOLUTIONS:

The language must define predefined unsigned integer types.

3-128
Supplement 1

—

Ada 9X Revision Request 0315

OPTIONAL INTEGER TYPES
DATE: September 13, 1989

NAME: Seymour Jerome Metz
DISCLAIMER:

The views expressed in this request are those of the author, and do not necessarily reflect those of Logicon.

ADDRESS: Home: 4963 Oriskany Drive
Annandale, Virginia 22003

Office: Logicon, Inc.
2100 Washington Boulevard
Arlington, Virginia 22204-5704

TELEPHONE: Home: (703) 256-4764
Office: (703) 486-3500 Extension 2295

ANSIMIL-STD-1815A REFERENCE: 3.5.4(7)

PROBLEM:
The LRM currently precludes nonstandard integer types, e.g., unsigned. This forces the compiler to
translate integer subtypes into representations that are longer than otherwise necessary, and in some cases

forces the use of otherwise unnecessary representation clauses. Several people have already submitted
requests for the special case of unsigned, but the problem is more general.

IMPORTANCE: IMPORTANT
Otherwise will rely on representation clauses, introducing another potential source of errors.
CURRENT WORKAROUNDS:
- Representation clauses
- Types defined in vendor-supplied packages
Neither of these is portable.
POSSIBLE SOLUTIONS:
Replace 3.5.4(7) with the following:

The predefined integer types include the type INTEGER. An implementation may also have predefined
types, such as SHORT_INTEGER and LONG_INTEGER, subject to the following restrictions.

No such type whose name begins with BYTE_ or with UNSIGNED may have negative values. The range

3-129
Supplement 1

Ada 9X Revision Request 0315

of any other such type whose name contains INTEGER must be symmetrical about zero, excepting an extra
negative value that may exist in some implementations, e.g., two’s complement.

Any such type whose name ends in _n, for a decimal number, must be exactly n bits long. The type
LONG_INTEGER (SHORT_INTEGER), if it exists, must not be shcrter (longer) than the type INTEGER.

The vendor is free to include or omit any of the above independently, except for the type INTEGER, which
is mandatory.

3-130
Supplement 1

Ada 9X Revision Request 0460

UNSIGNED ARITHMETIC

DATE September 25, 1989

NAME: Bryce M. Bardin

ADDRESS: Hughes Aircraft Company
Ground Systems Group
P.O. Box 3310, M/S 618/M215
Fullerton, CA 92634

TELEPHONE: (714) 732-4575
E-mail: BBardin@ajpo.sei.cmu.edu

ANSI/MIL-STD-1815A REFERENCE: 3.5.4(7)
PROBLEM:

The RM does not provide for implementation of unsigned integer types. Although many machines have
unsigned arithmetic instructions available, the semantics of Ada currently prevent the efficient calculation
of checksums, hash codes, pseudo-random numbers, and full range address arithmetic using those
instructions.

The need for unsigned integers in Ada is clear; many users have applications (which are trivial to implement
in many other languages) that cannot presently be written directly in Ada. In response to their customers’
expressed desires, a number of vendors have provided some form of support for unsigned integers which
conforms to the current standard, but they are only partially successful in providing the desired functionality
and their approaches are quite diverse. As a consequence, a uniform approach which addresses the major
uses of unsigned numbers should be incorporated into Ada9x.

The goals for unsigned integer types include:

1 providing an extended maximum non-negative integer range which fully exploits the available
hardware (and which allows full range address arithmetic when appropriate),

2 providing straightforward and efficiently-implementable logical operations (including shifts, rotates,
and masks) on all bits of unsigned types,

3. providing numeric literals in arbitrary bases (so that representations appropriate to a given
architecture may be chosen for bit-level operations), and

4. providing efficient support for modular arithmetic of arbitrary range (which allows checksums, hash
functions, and pseudo-random number generators which generate all possible bit patterns in closed
cycles to be cleanly written in Ada).

These requirements have been derived from extensive discussions with end users of the language and would
satisfy most, if not all of their expectations. There were two major subsets of properties desired by different
groups of users:

1. modular arithmetic required and logical operations seen as essentiz., and

3.131
Supplement I

Ada 9X Revision Request 0460

2. range-checked arithmetic expected, logical operations relatively unimportant.

The first group were very vocal and definite about their needs, and the second (and much smaller) group
were generally less so. The current proposal, which omits range-checked arithmetic, would, I believe, be
viewed as acceptable by the majority of those who expressed an opinion.

A number of people have suggested that logical operations can be provided using packed Boolean arrays
and instances of Unchecked_Conversion in order to convert back and forth from unsigned types to the
array type. There are a number of reasons why this approach was rejected here. Firstly, the intent of this
proposal is to encourage implementers to use the obvious machine instructions for efficiency. If conversion
to Boolean arrays are used, it is very clear that some implementations will not use the desired instructions,
because that part of the language has already been implemented in Ada83. Secondly, the clarity of
expression is better when appropriate based numeric literals are used. Last, but not least,] tried the use
of Boolean arrays and unchecked conversion and gave it up as too clumsy and inefficient of programmers’
time, besides being error-prone because the notation is not well-suited to the semantics of the intended
usage.

IMPORTANCE: ESSENTIAL

Current workarounds are generally unsatisfactory and highly non-portable. The Ada language is clearly
deficient in this area with regard to its support for its intended application domain: embedded, real-time
systems.

CURRENT WORKAROUNDS:

DEC defines its unsigned types in package SYSTEM. There are two "genuine” unsigned integer types
callec UNSIGNED_BYTE and UNSIGNED_WORD plus a signed integer type called
UNSIGNED_LONGWORD and a record type called UNSIGNED QUADWORD which has two
components of type UNSIGNED_LONGWORD. Static subtypes of the (signed) type
UNSIGNED_LONGWORD are provided. No discussion of further derivability of these types is provided.
By the absence of explicit statements, it may be inferred that the arithmetic on these unsigned types is not
modular.

For each unsigned integer type, the DEC implementation provides logical operators and a corresponding
constrained subtype of a common unconstrained packed BOOLEAN array type and conversions to and from
that subtype and the unsigned types. For example:

type BIT_ARRAY is array (INTEGER range <>) of BOOLEAN; pragma PACK
(BIT_ARRAY); -- There must be exactly 1 bit for each BOOLEAN -- component, which DEC kindly
provides for -- packed unconstrained arrays of BOOLEANSs.

Question: What is the weight of bit i? Is it 2**i or 2**(nn - 1 - i)?
Answer: It is implementation-dependent.

BIT_ARRAY should probably not be a standard part of the definition of unsigned types, because the added
functionality (indexing and catenation) is of marginal value, the order of bits is implementation-dependent,
and users can implement it themselves if they so desire (using UNCHECKED_CONVERSION).
Implementers may decide to provide it anyway, of course. The functional capabilities of BIT_ARRAY,
other than catenation, are available for the unsigned types proposed above, and the literals are much nicer.
For instance (taking a "little-endian" view):

3-132
Supplement I

Ada 9X Revision Request 0460

if (Logical_Shift(Modular_Value, -4) and 1) = 1 then ... -- bit 4 is on
or, perhaps more efficiently and more clearly:
Bit_4 : constant := 2#10000#; if (Modular_Value and Bit_4) = Bit_4 then ... -- bit 4 is on.

Alsys defines its unsigned types in package UNSIGNED (available only for the PC compiler). It defines
two unsigned integer types, type BYTE (range O .. 255) and type WORD (range 0 .. 65535).

Their representations in memory are context dependent. As record and array components, they occupy 8
and 16 bits, respectively; as scalar objects, they both occupy 16 bits.

Their arithmetic is modular and their subtypes have range-checking, but they are not "properly” derivable,
that is to say, types derived from them will be ordinary integer types, because it is asserted that their base
types are predefined integer types, rather than the types themselves.

Instantiations of UNCHECKED_CONVERSION are provided to and from other integer types, although
one would expect explicit conversions to be sufficient. Unchecked conversion from CHARACTER to BYTE
is provided, but (curiously) no function is provided to convert BYTE to CHARACTER (which ought to
raise CONSTRAINT_ERROR if the high bit is on). A wuser could (apparently) instantiate
UNCHECKED_CONVERSION on these types himself to remedy the oversight. Functions LSB, MSB, and
MAKE_WORD which extract the least or most significant BYTE of a WORD and construct a WORD from
two BYTES are provided; they could have been written in Ada.

Verdix provides a package called Unsigned_Types defining true 8-, 16-, and 32-bit unsigned integers without
logical operations. (They say to use it at your own risk, since it is not valid Ada). They also provide a
separate package called Iface_Bits for bit-wise logical operations on type Integer. Contrary to what might
be expected, they are named Bit_And, Bit_Or, Bit_Xor, and Bit_Neg, rather than the usual operator
symbols.

POSSIBLE SOLUTIONS:

The principal language issue is whether unsigned types can be provided at all and if so, how. Currently,
there are two relevant Al's: AI-00402 and AI-00597. AI-00402, which has been unanimously approved by
the ARG, but has not yet been seen by WG9 or AJPO, simply affirms (as a ramification) that unsigned
integer types are not predefined. AI-00597 is a work item that will directly address how unsigned integers
can be provided, if at all. The ARG has decided to take no action on this Al until the URG has
determined that AI-00597 is indeed proposing a necessary and useful interpretation of the standard, i.e., one
that is required to support a "necessary and useful” implementation

of unsigned integers.

Technically, the main problem is LRM 3.5.4(7), which says in part:

The range of each of these [predefined integer] types must be symmetric about zero, excepting an
extra negative value which may exist in some implementations.

Robert Dewar and Paul Hilfinger have suggested that this sentence might be interpreted to allow the
introduction of implementation-defined integer types in package SYSTEM or elsewhere. Such types would
not be predefined integer types and thus would not be used by the implementation in the derivations of
3.5.4(4-6), although other types might be derived from them and subtypes might be defined based on them.

3.133
Supplement 1

Ada 9X Revision Request 0460

Bryce Bardin has defined a standard package for unsigned integer types which takes advantage of this
interpretation. It takes the view that unsigned integer types are integer types in every other respect than
not participating in implicit derivations. In particular, they have as a subset of iheir predefined operations
the same operations provided for the predefined integer types, although the meaning of those operations
are different. A primary of a non-static universal expression can be implicitly converted to an unsigned
integer type. In addition, they match generic formal discrete and integer types. (E.g,
TEXT_IO.INTEGER_IO can be instantiated for these types.) Finally, it is proposed that the declaration
of subtypes of unsigned types and types derived from unsigned types will behave the same as for predefined
and user-defined integer types. In particular, it is intended that LRM 3.5.5(12) apply after modification by
replacing "predefined” by "implementation-defined" at its second occurrence: ..., the predefined operators
of an integer type deliver resuits whose range is defined by the parent [implementation-defined] iype; such
a result need not belong to the declared subtype, in which case an attempt to assign the result to a variable
of the integer subtype raises the exception CONSTRAINT_ERROR."

The additional operations on these types include bit-wise logical operators. When reading the description
of ARITHMETIC_SHIFT, remember that the unsigned types are non-negative (i.e., have no sign bit), which
leads to zero filling of the most significant bit. In accordance with the recommendation of AI-00387, the
operations on unsigned types always raise CONSTRAINT_ERROR, rather than NUMERIC_ERROR when
they cannot deliver the correct result.

In what follows, asides and comments are enclosed in square brackets ([]).
START OF PROPOSAL
DRAFT PROPOSAL ON UNSIGNED INTEGER TYPES

An implementation-defined unsigned integer type definition defines an integer type whose set of values
include exactly the specified range, where the lower bound is zero and the upper bound is either 2**n - 1
or 2**n - 2 for some positive integer n. The base type of such a type is the type itself.

Operations on implementation-defined unsigned integer types include all of the operations on integer types
plus the predefined logical operators and the highest precedence operator "not". The arithmetic operators
have their conventionai meaning, but the arithmetic is modular rather than range-checked as it is for the
predefined integer types. The logical operators have their conventional meaning as applied to unsigned
integers viewed as arrays of 1-bit numeric values which represent boolean values (with O corresponding to
FALSE and 1 corresponding to TRUE). (Note: based integer literals are available for defining values in
conventional formats, e.g., hexadecimal.) Additional operations for bit-wise arithmetic and logical shifts and
rotations are defined in the package specification given below.

For every integer type or subtype T, the following (implementation-defined) attribute is defined:

TMODULAR Yields the vaiue TRUE if T is an unsigned integer type with modular
arithmetic; yields the value FALSE otherwise. The value of this attribute
is of the predefined type BOOLEAN.

[This attribute facilitates the usage of modular types in generic units.}

Every implementation of should provide at least one unsigned integer type with modular arithmetic.

The implementation-defined unsigned types using modular arithmetic should include the type

MODULAR_nn, where nn represents an integer value equal to both MODULAR_nn'SIZE and

3.134
Supplement I

Ada 9X Revision Request 0460

INTEGER’SIZE. An implementation may aiso have other implementation-defined unsigned integer types
using modular arithmetic with names of the same form which have different sizes. The arithmetic
operations on these types are performed modulo 2**nn (for 2's complement machines) or modulo 2**nn
- 1 (for 1's complement machines).

[It would be symmetric to have a predefined integer type named INTEGER _nn instead of INTEGER here.
It would be less universal than INTEGER, but directly comparable to MODULAR _nn, and directly tied
to a specific hardware representation by a standard name.]

[The explicit declaration of unsigned types cannot be given in Ada because their base types are not implicitly
derived from predefined integer types as required by 3.5.4(4-6). Because of that, their declarations are given
here in the style of package STANDARD (see Annex C).]

The following outlines the specification of the package MODULAR_NUMBERS, containing all
implementation-defined unsigned integer type declarations. The corresponding package body is
implc mentation-defined and is not shown.

The operators that are predefined for the types declared in the package MODULAR_NUMBERS are given
in comments since they are implicitly declared. [talics are used [will be used] for pseudo-names of
anonymous types and for undefined information.

package MODULAR_NUMBERS is
type MODULAR _nn is implementation-defined;
-- Note:
-- MODULAR_nn’FIRST = 0
-- MODULAR_nn’LAST = 2**nn - 1 or 2**nn - 2
-- MODULAR_nn’BASE'’FIRST = MODULAR_nn’FIRST = 0
-- MODULAR_nn’BASE’LAST = MODULAR_nn’LAST
-- MODULAR_nn’PRED(MODULAR_nn’FIRST) = MODULAR_nn’LAST
-- MODULAR_nn’'SUCC(MODULAR_nn’LAST) = MODULAR_nn'’FIRST
for MODULAR _nn’SIZE use nn;

-- The predefined operators for this type are as follows:

-- function "=" LEFT, RIGHT : MODULAR_nn) return BOOLEAN; -- function "/="
(LEFT, RIGHT : MODULAR_nn) return BOOLEAN;

-- function "<" (LEFT, RIGHT : MODULAR_nn) return BOOLEAN; -- function "< ="
(LEFT, RIGHT : MODULAR_nn) return BOOLEAN,;

-- function ">" (LEFT, RIGHT : MODULAR_nn) return BOOLEAN; -- function ">="
(LEFT, RIGHT : MODULAR_nn) return BOOLEAN;

-- function "+" (RIGHT : MODULAR_nn) return MODULAR _nn;

-- function "-" (RIGHT : MODULAR_nn) return MODULAR _nn;

-- function "abs" (RIGHT : MODULAR _nn) return MODULAR _nn;

-- function "+" (LEFT, RIGHT : MODULAR_nn) return MODULAR _nn;

-- function "-" (LEFT, RIGHT : MODULAR_nn) return MODULAR _nn;

-- function "*" (LEFT, RIGHT : MODULAR_nn) return MODULAR _nn;

3-135

Supplement 1

Ada 9X Revision Request 0460

-- function "/ (LEFT, RIGHT : MODULAR_nn) return MODULAR_nn;
-- function "rem" (LEFT, RIGHT : MODULAR_nn) return MODULAR _nn;
-- function "mod" (LEFT, RIGHT : MODULAR_nn) return MODULAR _nn;
-- function "**" (LEFT : MODULAR _nn;
- RIGHT : INTEGER) return MODULAR _nn;
function "and" (LEFT, RIGHT : MODULAR_nn) return MODULAR _nn;
function "or" (LEFT, RIGHT : MODULAR_nn) return MODULAR_nn;
function "xor" (LEFT, RIGHT : MODULAR_nn) return MODULAR _nn;
function "not" (LEFT : MODULAR _nn) return MODULAR _nn;
function ARITHMETIC_SHIFT(ITEM : MODULAR _nn; BITS: INTEGER) return
MODULAR_nn;

- If BITS >= 0 or BITS < 0, returns ITEM left or right arithmetically shifted (with zero
fill) by abs(BITS) bits, respectively. Raises CONSTRAINT_ERROR if a bit would be
shifted off the left end.

function LOGICAL_SHIFT(ITEM : MODULAR _nn; BITS : INTEGER) return MODULAR _nn;

- If BITS >= 0 or BITS < 0, returns ITEM left or right logically shifted (end off) by
abs(BITS) bits, respectively.

function ROTATE (ITEM : MODULAR_nn; BITS : INTEGER) return MODULAR_nn;

- If BITS >= 0 or BITS < 0, returns ITEM left or right rotated (end around) by abs(BITS)
bits, respectively.

[The following two functions, REM_OF _SUM and REM_OF_PRODUCT, are needed to allow the
construction of types derived from MODULAR _rn, but with smaller ranges, having the desired semantics.
One possible package for this purpose is discussed below.]

function REM_OF_SUM (ADDEND,

AUGEND,

DIVISOR : MODULAR_nn) return MODULAR _nn;
-~ Returns MODULAR_nn((Anonymous(ADDEND) + Anonymous(AUGEND)) rem
Anonymous(DIVISOR)), where Anonymous is some integer type for which 2 *
MODULAR _nn’LAST is within the range of values.

function REM_OF_PRODUCT (MULTIPLIER,
MULTIPLICAND,
DIVISOR : MODULAR _nn) return MODULAR _nn;

-- Returns MODULAR _nn((Anonymous(MULITPLIER) * Anonymous(MULTIPLICAND)) rem
Anonymous(DIVISOR)), where Anonymous is some integer type for which MODULAR_nn'LAST
** 2 is within the range of values.

-- The following type facilitates the declaration of unsigned types of maximum range:

3-136
Supplement 1

Ada 9X Revision Request 0460

type LARGEST_MODULAR_TYPE is
new implementation_defined_modular_type;

[These could also be declared using subtypes and renaming of operations, but the derived type approach
used here is simpler and therefor clearer to the user.]

end MODULAR_NUMBERS;
[In analogy with:
type T is range SYSTEMMIN_INT .. SYSTEM.MAX_INT;

for symmetric integer types, unsigned integer types of maximum range can be declared (in portable syntax)
by:

type T is new LARGEST MODULAR_TYPE;]

END OF PROPOSAL

The following material amplifies the semantics of the proposal.
Operational Semantics for Unsigned Types

The following package demonstrates the semantics desired for the implementation-dependent unsigned types
defined in the draft proposal.

- Modular_Numbers demonstrates (most of) the desired properties of implementation-defined
unsigned numbers having modular arithmetic.

- In particular, it shows the behavior required for the arithmetic, relational, and logical
operations on type Modular. In addition, it provides analogs for the 'Pred and ’Succ
attributes.

- It was considered unnecessary to simulate the other attributes and the Shift and Rotate
operations since they are expected to reflect the usual properties of the underlying hardware
operations.

- N. B.: This simulation is also not realistic with regard to the representation of the type

Modular.
generic
type Basis is range <>; -- Any predefined or user-defined integer type or subtype
Modulus : in Basis; -- Any positive value less than Basis’Last/2
type Extended is range <>; -- Any integer type with a range such that Extended’Last

>= (Modulus - 1)**2

3137
Supplement I

Ada 9X Revision Request 0460

type Logical is range <>; -- Any integer type with a range at least 0 .. Modulus -
1 for which bit-level logical operations are available.
with function "and" (Left, Right : Logical) return Logical is <>;
with function "or" (Left, Right : Logical) return Logical is <>;
with function "xor" (Left, Right : Logical) return Logical is <>;
with function "not” (Right : Logical) return Logical is <>;
package Modular_Numbers is
type Modular is new Basis range 0 .. Modulus - 1;
-- Note:
-- Modular’First = 0
-- Modular’Last = Modulus - 1

-- Modular’Base’First = Modular’First = 0
-- (Not true in this simulation)

-- Modular’Base’Last = Modular’Last
-- (Not true in this simulation)

-- Modular’Pred(Modular’First) = Modular’Last
-- (Not true in this simulation)

-- Modular’'Succ(Modular’Last) = Modular’First
-- (Not true in this simulation)

-- The predefined operators for this type are as follows:

-- function "=" (Left, Right : Modular) return Boolean;
-- function /=" (Left, Right : Modular) return Boolean;
-- function "<" (Left, Right : Modular) return Boolean;
-- function "< =" (Left, Right : Modular) return Boolean;
-- function ">" (Left, Right : Modular) return Boolean;
-- function ">=" (Left, Right : Modular) return Boolean;
-- function "+" (Right : Modular) return Modular;

-- function "." (Right : Modular) return Modular;

-- function "abs" (Right : Modular) return Modular;

-- function "+" (Left, Right : Modular) return Modular;
-- function "-" (Left, Right : Modular) return Modular;
-- function "*" (Left, Right : Modular) return Modular;
-- function "/ (Left, Right : Modular) return Modular;
-- function "rem" (Left, Right : Modular) return Modular;
-- function "mod" (Left, Right : Modular) return Modular;
-- function "**" (Left : Modular; Right : Integer) return Modular;

3-138

Supplement I

h}

-

Ada 9X Revision Request : 0460
-- function "and" (Left, Right : Modular) return Modular; ‘
-- function "or" (Left, Right : Modular) return Modular;
-- function "xor” (Left, Right : Modular) return Modular;
-- function "not" (Right : Modular) return Modular;
-- The following functions are cyclic substitutes for the attributes Moduiar’Pred and Modular’Succ,
respectively.
-- function Pred (Right : Modular) return Modular;
-- function Succ (Right : Modular) returm Modular;

-- The following functions are not implemented:

-- function Arithmetic_Shift (Item : Modular_nn;

-- Bits Integer) return Modular_nn;

-- function Logical_Shift (Item : Modular;

-- Bits : Integer) return Modular_nn;

-- function Rotate (Item : Modular_nn;

-- Bits : Integer) return Modular_nn;

-- function Rem_of_Sum (Addend, Augend, Divisor : Modular) return Modular;

-- function Rem_of_Product (Multiplier, Multiplicand, Divisor : Modular) return Modular;

end Modular_Numbers;

package body Modular_Numbers is ‘
function "-" (Right : Modular) retarn Modular is
begin
if Modulus = 1 then
return 0;
else
return (Modular’Last - Right) + 1;
end if;

end "-";

function "+" (Left, Right : Modular) return Modular is
begin
return Modular((Extended(Left) + Extended(Right))
mod Extended(Modulus));
end "+7;

function "-" (Left, Right : Modular) return Modular is

begin
if Right > Left then
return ((Modular'Last - Right) + Left) + 1;
else
return Modular(Basis(Left) - Basis(Right));
end if;
end "-"; '

3-139
Supplement I

—

Ada 9X Revision Request 0460

function "*" (Left, Right : Modular) return Modular is
Product : Modular;
begin
return Modular((Extended(Left) * Extended(Right))
mod Extended(Modulus));
end "*";

function "**" (Left : Modular;
Right : Integer) return Modular is

T : Modular;
begin
if Modulus = 1 then
return 0;
else
T:=1;
for N in 1 .. Right leop
T:=T* Left;
end loop;
return T,
end if
end "**;

function "and" (Left, Right : Modular) return Modular is
begin

return Modular(Logical(Left) and Logical(Right));
end "and";

function "or" (Left, Right : Modular) return Modular is

begin
return Modular(Logical(Left) or Logical(Right));
end "or”;

function "xor” (Left, Right : Modular) return Modular is
begin

return Modular(Logical(Left) xor Logical(Right));
end "xor";

package Make is
function Mask return Logical;
end Make;
package body Make is
Mask_Constant : Logical;
function Mask return Logical is
begin
return Mask_Constant;
end Mask;

3-140
Supplement I

]

Ada 9X Revision Request

begin
Mask_Constant := 0;
for C in Modular loop
Mask_Constant := Mask_Constant or Logical(C);
end loop;
end Make;

function "not" (Right : Modular) return Modular is
begin

return Modular(not Logical(Right) and Make.Mask);
end "not”;

function Pred (Right : Modular) return Modular is
begin
if Right = O then
return Modular(Modulus - 1);
else
return Modular(Basis’Pred(Basis(Right)));
end if;
end Pred;

function Succ (Right : Modular) return Modular is
begin
if Right = Modular(Modulus - 1) then

return O;
eise
return Modular(Basis’Succ(Basis(Right)));
end if;
end Sucg;

function Rem_of_Sum (Addend, Augend, Divisor : Modular)
return Modular is

begin
return Modular(

(Extended(Addend) + Extended(Augend)) remExtended(Divisor)),

end Rem_of_Sum;

function Rem_of_Product (Multiplier,
Multiplicand,

Divisor : Modular) return Modular is

begin
return Modulai(

(Extended(Multiplier) * Extended(Multiplicand)) rem Extended(Divisor));

end Rem_of_Product;

begin
if Extended’Last < Extended(Basis’Last) ** 2 then

raise Program_Error;
end if,

3.141
Supplement I

Ada 9X Revision Request 0460

end Modular_Numbers;

Unsigned Types of Arbitrary Range

The following package can be used to provide modular unsigned types of arbitrary range by derivation from
the unsigned types in package MODULAR_NUMBERS. It is directly implementable by any user.

generic

type Basis is range <>;
Modulus : in Basis;

with function Rem_of_Sum (Addend, Augend, Divisor : Basis)
return Basis is <>;
with function Rem_of_Product (Multiplier,
Multiplicand,
Divisor : Basis) return Basis is <>;

with function "and" (Left, Right : Basis) return Basis is <>;
with function "or" (Left, Right : Basis) return Basis is <>;
with function "xor" (Left, Right : Basis) return Basis is <>;
with function "not" (Right : Basis) return Basis is <>;

with function Pred (Item : Basis) return Basis is Basis'Pred;
with function Succ (Item : Basis) return Basis is Basis’Succ;

package Derived_Modular is
type Modular is new Basis range 0 .. Modulus - 1;

-- function "<" (Left, Right : Modular) return Boolean;
-- function "<=" (Left, Right : Modular) return Boolean;
-- function ">" (Left, Right : Modular) return Boolean;
-- function ">=" (Left, Right : Modular) return Boolean;

-- function "+" (Right : Modular) return Modular;
function "-" (Right : Modular) return Modular;
-- function "abs" (Right : Modular) return Modular;

function "+" (Left, Right : Modular) return Modular;
function "-" (Left, Right : Modular) return Modular;
function "*" (Left, Right : Modular) return Modular;

-- function "™ (Left, Right : Modular) return Modular;
-- function "rem" (Left, Right : Modular) return Modular;
-- function "mod” (Left, Right : Modular) return Modular;

function "**" (Left : Modular; Right : Integer)
return Modular;

3-142
Supplement 1

ﬂ

Ada 9X Revision Request 0460

function "and" (Left, Right : Modular) return Modular; .
function "or" (Left, Right : Modular) return Modular;

function "xor" (Left, Right : Modular) return Modular;

function "not" (Right : Modular) return Modular;

function Pred (Item : Modular) return Modular;
function Succ (Item : Modular) return Modular;

end Derived_Modular;

package body Derived_Modular is

function "-" (Right : Modular) return Modular is

begin
if Modulus = 1 then
return 0;
else
return (Modular’Last - Right) + 1;
end if:
end "-";

function "+" (Left, Right : Modular) return Modular is

begin
return Modular(Rem_of_Sum(Basis(Left), Basis(Right), Modulus));

end "+"; ’

function "-" (Left, Right : Modular) return Modular is

begin
if Right > Left then
return ((Modular'Last - Right) + Left) + 1;
else
return Modular(Basis(Left) - Basis(Right));
end il
end "-";

function "*" (Left, Right : Modular) return Modular is

begin
return Modular(Rem_of_Product(Basis(Left), Basis(Right), Modulus));
end mn;

function "**" (Left : Modular; Right : Integer) return Modular is
Temp : Modular;

begin
if Modulus = 1 then
return 0;
else
Temp := 1;

for N in 1 .. Right loop
Temp := Temp * Left;

end loop; .

3-143
Supplement I

Ada 9X Revision Request

return Temp;
end if
end "**";

function "and" (Left, Right : Modular) return Modular is
begin

return Modular(Basis(Left) and Basis(Right));
end "and";

function "or" (Left, Right : Modular) return Modular is
begin

return Modular(Basis(Left) or Basis(Right));
end "or";

function "xor" (Left, Right : Modular) return Modular is
begin

return Modular(Basis(Left) xor Basis(Right));
end "xor";

package Make is
function Mask return Basis;
end Make;

package body Make is

Mask_Constant : Basis;

function Mask return Basis is

begin
return Mask_Constant;
end Mask;
begin
Mask_Constant := 0;
for C in Modular loop
Mask_Constant := Mask_Constant or Basis(C);
end loop;
end Make;

function "not” (Right : Moduiar) return Modular is

begin
return Modular(not Basis(Right) and Make.Mask);
end "not”

function Pred (Item : Modular) return Modular is
begin
if Item = O then
return Modular’Last;

3.144
Supplement I

.=

Ada 9X Revision Request 0460
else
return Modular(Pred(Basis(Item)));
end if
end Pred;
function Succ (Item : Modular) return Modular is
begin
if Item = Modular’Last then
return 0;
else
return Modular(Succ(Basis(Item)));
end if;
end Succ;

end Derived_Modular;

Examples of the Behavior of Unsigned Types

The following are examples of the desired behavior of modular unsigned types (the base 2 values assume
2’s compiement representation):

The modulus is 3

0 (+ 2#0# = 2#0#)
1 (+ 2#1# = 2#1#)
2

0
1
2 = 2 (+ 2#10# = 2#10#)

++ +

wnw

0 (- 2#0# = 2#0#)
2 (- 2#1# = 2#10#)
1 (- 2#10# = 2#1#)

-0
-1
-2
0+ 0 =0 2#0# + 240# = 240#)
2+ 2 =1Q#I0# + 2#10# = 2#1%)
0-0 = 0 (2#0# - 2#0# = 2#0#)
2.2 = 0 (2#10# - 2#10# = 2#0#)
0% 0 = O 2H#O# * 2#0# = 2#0%#)
242 =1 (2#10# * 2#10# = 241#)
Constraint_Error

0 (2#0# | 2#1% = 2#0#)

0 (2#0# / 2#10# = 2#0#)

Constraint_Error
1 Q#1# | 2#1# = 2#1#)

—-—_00O0
e
—~OoON~O
ouowun

3-145
Supplement I

Ada 9X Revision Request

1/2 =0 Q#1# | 2#10# = 2#0#)
2 / 0 = Constraint_Error

2/1 =2 2#10# [2#1# = 2#10#)
2/2 =1 (2#10# | 2#10# = 2#1#)

0 rem 0 = Constraint_Error

Orem 1 = 0 2#0# rem 2#1# = 2#0#)
0 rem 2 = 0 (2#0# rem 2#10# = 2#0#)
1 rem 0 = Constraint_Error

1 rem 1 = 0 Q#1# rem 2#1# = 2#0#)

1 rem 2 = 1 2#1# rem 2#10# = 2#1#)
2 rem 0 = Constraint_Error

2rem 1 = 0 2#10# rem 2#1# = 2#0#)
2 rem 2 = 0 (2#10# rem 2#10# = 2#0#)

0 mod 0 = Constraint_Error
0 mod 1 = 0 (2#0# mod 2#1# = 2#0#)
0 mod 2 = 0 (2#0# mod 2#10# = 2#0#)
1 mod 0 = Constraint_Error

1 mod 1 = 0 (2#1# mod 2#1# = 2#0#)
1mod 2 = 1 (2#1# mod 2#10# = 2#1#)
2 mod 0 = Constraint_Error

2mod 1 = 0 (2#10# mod 2#1# = 2#0#)
2 mod 2 = 0 (2#10# mod 2#10# = 2#0#)

0 ** 0 = 1 Q#0# ** 2#0# = 2#1#)
2% 2 = 1 (2#10# ** 2#10# = 2#1#)
0 and 0 = 0 (2#0# and 2#0# = 2#0#)

2 and 2 = 2 (2#10# and 2#10# = 2#10#)

0 or 0 = 0 Q#0# or 2#0# = 2#0#)
lorl =1 QQ#1# or 2#1# = 2#1#)

1 or 2 = Constraint_Error

2or 0 =2 (2#10# or 2#0# = 2#10#)
2 or 1 = Constraint_Error

20r 2 = 2 (2#10# or 2#10# = 2#10#)
0 xor 0 = 0 (2#0# xor 2#0# = 2#0#)

1 xor

1 = 0 2#1# xor 2#1# = 2#0#)
1 xor 2 = Constraint_Error
2 xor 0 = 2 (2#10# xor 2#0# = 2#10#)
2 xor 1 = Constraint_Error
2 xor 2 = 0 (2#10# xor 2#10# = 2#0#)

not 0 = Constraint_Error
not 1 = 2 (not 2#1# = 2#10#)

3-146
Supplement I

Ada 9X Revision Request

not 2 = 1 (not 2#10# = 2#1#)

Pred(0) = 2 (Pred(2#0#) = 2#10#)
Pred(1) = 0 (Pred(2#1#) = 2#0#)
Pred(2) = 1 (Pred(2#10#) = 2#1#)

Succ(0) = 1 (Succ(Z#0#) = 2#1#)
Succ(1) = 2 (Succ(R#1#) = 2#10#)
Succ(2) = 0 (Succ2#10#) = 2#0#)

The modulus is 4

0 (+ 2#0# = 24#0#)
1 (+ 2#1# = 2#1#)

2 (+ 2#10# = 2#10#)
3 (+ 2#11# = 2#11#)

++++
W N -=OQ
(I T [

[}
W=

0 (- 2#0# = 2#0#)
3 (- 2#1# = 2#11#)
2 (
1(

- 2#10# = 2#10#)
- 2#11# = 2#1#)

[T |

0 + 0 = 0 (2#0# + 2#0# = 240#)
3+ 3 = 2 Q#L1L# + 2#11# = 2#104)
0-0 = 0 2#0# - 2#0# = 2#0#)
3.3 = 0 Q#LL# - 2H#11# = 2#0%)
0% 0 = 0 (2#0# * 2#0# = 240#)

3*3 =1 Q#11# * 2#11# = 2#1#)

0 / 0 = Constraint_Error

0/1 =0 2#0# / 2#1# = 2#0#)
0/2 =0 2#0# / 2#10# = 2#0#)
0/3 =0 Q#0# / 2#11# = 2#0#)
1/ 0 = Constraint_Error

1/1 =1 #1# / 2#1# = 2#1#)
1/2 =0 #1# / 2#10# = 2#0#)
173 =0 (2#1# / 2#11# = 2#0#)
2 / 0 = Constraint_Error

2/ 1 =2 2#10# | 2#1# = 2#10#)
2/2 =1 (2#10# | 2#10# = 2#1#)
273 =0 2#10# / 2#11# = 2#0#)
3 /0 = Constraint_Error

371 =3 2#11# / 2#1# = 2#11#)
3/2 =1 Q#11# / 2#10# = 2#1#)

3-147
Supplement 1

Ada 9X Revision Request

3/3 =1 Q#I11# /| 2#11# = 2#1#)

0 rem 0 = Constraint_Error

Orem 1 = 0 2#0# rem 2#1# = 2#0#)
O rem 2 = 0 (2#0# rem 2#10# = 2#0#)
O rem 3 = 0 (2#0# rem 2#11# = 2#0#)
1 rem 0 = Constraint_Error

1 rem 1 = 0 (2#1# rem 2#1# = 2#0#)
1rem 2 = 1 (2#1# rem 2#10# = 2#1#)
1 rem 3 = 1 (2#1# rem 2#11# = 2#1#)
2 rem 0 = Constraint_Error

2rem 1 = 0 2#10# rem 2#1# = 2#0#)
2 rem 2 = 0 (2#10# rem 2#10# = 2#0#)
2 rem 3 = 2 2#10# rem 2#11# = 2#10#)
3 rem 0 = Constraint_Error

3rem 1 = 0 2#11# rem 2#1# = 2#0#)
3rem 2 = 1 #11# rem 2#10# = 2#1#)
3rem 3 = 0 2#11# rem 2#11# = 2#0#)

0 mod 0 = Constraint_Error
0 mod 1 = 0 (2#0# mod 2#1# = 2#0#)
0 mod 2 = 0 (2#0# mod 2#10# = 2#0#)

0 mod 3 = 0 (2#0# mod 2#11# = 2#0#)
1 mod 0 = Constraint_Error

1 mod 1 = 0 (2#1# mod 2#1# = 2#0#)
1 mod 2 = 1 (2#1# mod 2#10# = 2#1#)
1 mod 3 =1 (2#1# mod 2#11# = 2#1#)
2 mod 0 = Constraint_Error

2 mod 1 = 0 (2#10# mod 2#1# = 2#0#)

2 mod 2 = 0 (2#10# mod 2#10# = 2#0#)
2 mod 3 = 2 (2#10# mod 2#11# = 2#10#)
3 mod 0 = Constraint_Error

3mod 1 = 0 (2#11# mod 2#1# = 2#0#)
3mod 2 = 1 (2#11# mod 2#10# = 2#1#)
3 mod 3 = 0 (2#11# mod 2#11# = 2#0#)

0*0

1 (2#0# ** 2#0# = 2#1#)

3 0% 3

3 (2#11# ** 2#11# = 2#11#)
0 and 0 = 0 (2#0# and 2#0# = 2#0#)
3 and 3 = 3 2#11# and 2#11# = 2#11#)

O0or 0 = 0 (2#0# or 2#0# = 2#0#)

3or3 =3 (2#11# or 2#11# = 2#11#)
0 xor 0 = 0 (2#0# xor 2#0# = 2#0#)
3 xor 3 = 0 2#11# xor 2#11# = 2#0#)

3-148
Supplement I

Ada 9X Revision Request 0460
not 0 = 3 (not 2#0# = 2#11#)

not 1 = 2 (not 2#1# = 2#10#)

not 2 = 1 (not 2#10# = 2#1#)

not 3 = 0 (not 2#11# = 2#0#)
Pred(0) = 3 (Pred(2#0#) = 2#11#)
Pred(1) = O (Pred(2#1#) = 2#0#)
Pred(2) = 1 (Pred(2#10#) = 2#1#)
Pred(3) = 2 (Pred(2#11#) = 2#10#)
Succ(0) = 1 (Succ(2#0#) = 2#1#)
Succ(l) = 2 (Succ(Z#1#) = 2#10#)
Succ(2) = 3 (Succ(2#10#) = 2#11#)
Succ(3) = 0 (Succ(Z#11#) = 2#0#)

Specific Ada 9x Issues
The revision of the language needs to address the syntax and semantics for declaring unsigned integer types
in a more general fashion, similar to the current model for signed integer types. The changes ought to be
upward compatible since the types would be declared in STANDARD. The following illustrates some of
the possibilities when no new reserved words are used:
In STANDARD, the (minimal) required declarations are:

type MODULAR _nn is implementation_defined;
Other optional types could be supplied by the implementation.
A user-defined unsigned integer with modular arithmetic might be declared by:

type MY_MODULAR is mod M;
where M is the modulus of the arithmetic and MY _MODULAR’LAST is M - 1.

A portable syntax for declaring the largest possible distinct unsigned types would be available if the
following are declared:

type LARGEST _ MODULAR_TYPE is new implementation_defined_modular_type;
(These could be defined more directly if true type renaming were allowed in the revision:

type LARGEST_MODULAR_TYPE renames implementation_defined_modular_type;)
Then the following declaration may be made:

type MY_MODULAR is new LARGEST MODULAR_TYPE;

As an alternative, if SYSTEM contains:

3-149
Supplement 1

Ada 9X Revision Request

MAX_MODULUS : constant implementation_defined;
then the following declaration is possible:

type MODULAR is mod SYSTEM.MAX_MODULUS;

3-150
Supplement 1

Ada 9X Revision Requests 0251

SELECTOR, TYPE MARK AND CONVERSIONS, ATTRIBUTE,
ENUMERATION MEMBER, FUNCTIONS RETURNING MATRIX ELEMENTS,
AND RECORD ARRAY MATRIX ELEMENTS COMPONENTS ALL
APPEAR TO BE FUNCTIONS IN THE SOURCE

DATE: June 9, 1989
NAME: J. A. Edwards

ADDRESS: General Dynamics
P.O. Box 748 MZ 1746
Fort Worth, Texas 76101

TELEPHONE: (817) 763-2612
ANSI/MIL-STD-1815A REFERENCE: 355, 4.1.4 #1, 43.1 #6, 4.6 #10.20, 4.1.1#5, 6.1

PROBLEM:

The notation in Ada is such that too many things resemble a function call or an array. Therefore, it is not
obvious to determine what the program is expressing. The notation could be more consistent, and more
elegant, by cutting down on the number of objects that appear to be functions or array elements. An
improvement certainly is in the direction of improving the maintainability of Ada programs.

Several confusing situations can be created due to overuse of the "function” or "array” notation. For the
first example, a type conversion would be better shown as something like:

ONE:= INTEGER'TWO; rather than ONE:= INTEGER(TWO);

The former stands out as user defined conversion is taking place. This should be consistent as attributes
are treated as function calls. If confusion exists with attribute notation, then chose another symbol rather
than ’.

Next, the notation of Z:=F(A)(3,2) is hardly clear whether it is a function returning a matrix element or
a component of a record. The latter would be better expressed with component selector notation like F.A
(3,2). A discriminated record should only appear in the declaration where the object is allocated and not
resemble either the function or record component case.

Thirdly, a Selector should always indicate a member of or an element of. Therefore, to be consistent, an
enumeration selector could use the selector notation, ".". Instead of writing COLOR'RED the user would
write COLOR.RED.

Even in the LRM example for an aggregate in 4.3.1 #6, there are not enough parentheses to make the
outcome of the statement clear the attributes. The user would expect that the aggregate would initialize
an element for a doubly linked list with PRED pointing to the last one and SUCC to the null one.
Therefore, attributes would similarly be designated for other uses of ’ to indicate a characteristic of the
element. Then, for example, an array bound can be shown as VECTOR’FIRST or VECTOR’LAST. The
notation for ’ is just not clear.

3-151
Supplement I

Ada 9X Revision Requests 0251

IMPORTANCE: IMPORTANT

CURRENT WORKAROUNDS:

Programming standards, renames, avoiding use of predefined attributes.
POSSIBLE SOLUTIONS:

Rework the definition of all objects that take on the appearance of
X:= F(A);

so that a function or an array is distinguishable from attributes, conversions, and enumeration members.

3-152
Supplement I

Ada 9X Revision Request 0623

RANGE ATTRIBUTE FOR DISCRETE TYPES

DATE: October 19, 1989
NAME: James Lee Showalter, Technical Consultant
DISCLAIMER:

This Revision Request has been submitted to some amount of peer review by others at Rational, but it is
not an official Rational submission.

ADDRESS: Rational
3320 Scott Blvd.
Santa Clara, CA 95054-3197

TELEPHONE: (408) 496-3706 [11am-9pm]
ANSI/MIL-STD-1815A REFERENCE: 355
PROBLEM:

The standard defines a 'RANGE attribute for array types, but not for discrete types. This forces
programmers to adjust their thinking to know when they can use a '/RANGE attribute and when they
cannot.

IMPORTAN CE IMPORTANT

This revision request is motivated primarily by concerns about symmetry and aesthetics, but the concerns
are valid since there does not seem to be any good reason why such an attribute is not already defined by
the existing standard.

CURRENT WORKAROUNDS:

Write loop constraints on discrete types either using 'FIRST and "'LAST attributes or the name of the type
by itself.

POSSIBLE SOLUTIONS:

Add a 'RANGE attribute for discrete types.

COMPATIBILITY:

The proposed solution is quasi-compatible. All previously-compiled code will re-compile successfully unless

it contains an implementation-defined 'RANGE attribute for discrete types (this is not, however, all that
likely).

3-153
Supplement I

Ada 9X Revision Request 0495

LEADING SPACE IN THE 'IMAGE ATTRIBUTE FOR INTEGER TYPES

DATE: October 24, 1989
NAME: Mats Weber
ADDRESS: Swiss Federal Institute of Technology

EPFL DI LITh

1015 Lausanne

Switzerland
TELEPHONE: +41 21 693 42 43

E-mail : madmats@elcit.epfl.ch

ANSI/MIL-STD-1815A REFERENCE: 3.5.5(10)
PROBLEM:

The leading space character in the 'Image attribute for integer types is undesirable in many cases, and it
is much easier to add a leading space than to remove one,

Furthermore, it seems inconsistent with the definition of *Image for enumeration types, where it returns only
the significant characters.

IMPORTANCE: ADMINISTRATIVE

CURRENT WORKAROUNDS:

POSSIBLE SOLUTIONS:

Change LRM 3.5.5(10).

3.154
Supplement 1

-

Ada 9X Revision Requests 0252

DOING MATH IN ADA
DATE: May 15, 1989
NAME: J. A. Edwards

ADDRESS: General Dynamics
P.O. Box 748 MZ 1746
Fort Worth, Texas 76101

TELEPHONE: (817) 7623325
ANSI/MIL-STD-1815A REFERENCE: 356.358, 3.5.10, 3.5.7
PROBLEM:

Model/safe number for type REAL drives the implementation into senseless conversions and becomes quite
inefficient in trying to "emulate” math types not supported by the hardware. Exceptions are often forced
when they are unwanted. Extra work has to be done to suppress exceptions for math types like fixed point.

The particular math model does not fit well with the IEEE floating point standard which more correctly
models mathematics. Proposed approaches to incorporate a secondary standard for the IEEE package still
errs in the direction of excessive code for exception handling where the hardware and interrupt handlers
are sufficient. The embedded applications can perform the processing for accommodating a diverging
numerical algorithm.

Also, because of the semantics on real numbers, the execition precision can be badly impacted so as not
to function in realtime. By not matching machine characteristics, precision/accuracy and size cause great
inefficiencies. In summary, the Ada math model does not guarantee portability. The programmer cannot
tell if some range representations will be single or double precision with RANGE and DIGITS/DELTA.
To the view of programmers and the machine representation, the basic unit of size is binary and not digits
or delta. Further, Ada hides roundoff and truncation rules from the application which adversely affects
numerical results.

IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS:

Programming standards or assembler code for controlling roundoff.
POSSIBLE SOLUTIONS:

1. Delete the verbage having to do with model and safe numbers as no one is sure what the LRM
is talking about and the machine model assumption meets no architecture model that we have.
When porting software, it is still incumbent on the software designer to assure that the algorithms
converge and are accurate on a new target architecture. The portability task can only default to
the compiler when performance is not a concern.

<<minor changes>>

3-155
Supplement 1

Ada 9X Revision Requests ' 0252

2. Delete following subpara.:

3 and #4, the first and last sentences of #5 in 3.5.6; #6, #7, "which has....than Float" in sentence
1 and all of last 2 sentences of #8, #9 of 3.5.7; # 8...13, sentence 2 of #14, and the notes/examples
in #17..19 of 3.5.8; word model in #4, all #5, #6, #7, model in #10, notes #16 in 3.5.9; # 4, 5,
10..12, and notes #16 of 3.5.10; #1...9 and "model" in #10 in 4.5.7;

as having no clear definition with too many antecedents for "these". If this is to remain then it
must be translated to a discussion of precision/accuracy.

< <moderate change>>

3. There is no control on truncation and rounding except in the representation section. Conversions
to integer from real is defined to round rather than the customary truncate. Here, the programmer
should be in control. Rounding will interfere with the numeric precision of the algorithms.

4. Add a length specification as another choice of attributes for numeric types so as to be able to
map more closely to hardware and achieve the realtime efficiency needed. Non binary
representations of delta and digits are not helpful in the embedded community.

3. Remove the wording that allows the representation to only get close to the specification. The
language is rich enough as it is to support a named number for a range bound. Therefore, if the
programmer writes a range of -1.0..1.0 it should be inclusive so that an assignment of 1 will not
cause an exception to be raised. If the programmer needs only a single precision 16 bit fixed point,
then he should write the upper bound as 1-T'smail. On looking at the code in a maintenance
phase, there should be no hidden meanings of the range that implicitly subset the declaration.

3-156
Supplement I

Ada 9X Revision Requests 0253

DIGITS TO SPECIFY REAL NUMBER ACCURACY AND PRECISION
AND THE ASSOCIATED TRANSPORTABILITY/ EFFICIENCY
PROBLEMS (SIMILARLY FOR DELTA)

DATE: May 21, 1989
NAME: J. A. Edwards

ADDRESS: General Dynamics
P.O. Box 748 MZ 5050
Fort Worth, Texas 76101

TELEPHONE: (817) 763-2612
ANSI/MIL-STD-1815A REFERENCE: 356, 3.5.7
PROBLEM:

DIGITS is necessary to define attributes of floating point numbers/ objects. However, DIGITS is defined
as the greatest integer of [N*LOG (10)/LOG (2)+1] which is not an exact integer for determining the
binary representation. This specification never matches the architecture capability. The binary rounding
for the conversion to DIGITS would occur on every assignment. Is DIGITS 6 or DIGITS 7 single or
double precision? When the economy of performance counts for memory and throughput, the precise
representation is needed to avoid conversions to the DIGITS specification, i.e., the typical approach of
defining digits as a binary expression is desired by most algorithms. If not available in the language, the
algorithm will control it appropriately. However, the current method lacks the expressibility and economy
of programming that is desired in modern languages. Further, it is error prone.

DIGITS specification is neither more or less portable than being able to precisely obtain single or double
precision. The machine implementation of floating point only supports single or double precision and
seldom triple. With. Ada, the programmer may not get support for either except in a huge library of
runtimes. Floating point algorithms do not transport that easily without careful understanding of precision
and impact on convergence. DIGITS specification will not ensure the ease of portability.

The precision is the key item. Therefore, non binary specifications of DIGITS (and DELTA) are only good
for binary coded decimal applications at great overhead in implementation and not suitable for floating
point. The embedded processing world should not have to carry the burden of inefficient language
representations for programs that may not port well. With object oriented programming, the methods for
porting software should be greatly improved and large re-writes should not be necessary just to tune the
floating point to the actual hardware precision.

IMPORTANCE: IMPORTANT

Non binary specification of DIGITS (also DELTA) doesn’t map to embedded computer floating point
(fixed point) very well. In addition, many of the newer applications use the IEEE floating point standard
which is one of the most impressive means of porting applications and doing high precision mathematicai
algorithms and Ada has no support package nor means for supporting the IEEE constructs, e.g., INFINITY,
NAN, suppressing overflows automatically, in the manner intended by the IEEE floating point design
considerations.

3-157
Supplement I

Ada 9X Revision Requests 0253

CURRENT WORKAROUNDS:
None without special math packs built into the compiler SYSTEM package.
POSSIBLE SOLUTIONS:

Provide better semantics for the representation and expression of floating point precision (also fixed point).

3-158
Supplement I

E——

Ada 9X Revision Requests 0254

IMPLICIT RAISING OF EXCEPTIONS FOR INTERMEDIATE COMPUTATIONS
DATE: May 21, 1989
NAME: J. A. Edwards

ADDRESS: General Dynamics
P.O. Box 748 MZ 1746
Fort Worth, Texas 76101

TELEPHONE: (817) 763-2612
ANSI/MIL-STD-1815A REFERENCE: 3.5.6, 11.6#6
PROBLEM:

Permissive semantics for raising an error exception or for a warning for intermediate results hampers the
transportability of code. Without a specific requirement as to when the exception is raised makes compilers
implementation dependent. The LRM should specify that the error be raised only when (1) the maximum
precision of the extended representation overflows or (2) the overflow occurs on conversion to the object
type on assigning the result. The control of intermediate results should not be left as an option to the
implementor. The LRM should not separate the requirements in 3.5.6 and in another section far away, 11.6
#6.

IMPORTANCE: IMPORTANT

High for transportability and determination of how a compilation system will perform. (see comment on
earliest detection of errors--#0-028)

CURRENT WORKAROUNDS:

Not writing complex arithmetic expressions.

POSSIBLE SOLUTIONS:

1. Provide explicit semantics for defining when intermediate results can raise an exception.

2. Allow user control to specify that greater precision can be used as long as the final results meet
the demands of the expression.

3.159
Supplement I

Ada 9X Revision Request 0731

SIMPLIFICATION OF NUMERICS, PARTICULARLY FLOATING POINT
DATE: October 12, 1989
NAME: B. A. Wichmann

ADDRESS: National Physical Laboratory
Teddington, Middlesex
TW11 OLW. UK

TELEPHONE: +44 1 943 6076 (direct)
+44 1 977 3222 (messages)
+44 1 977 7091 (fax)
E-mail: baw@seg.npl.co.uk

ANSIMIL-STD-1815A REFERENCE: 3.5(6), 3.5(8), 13.7(3)
PROBLEM:

The properties of numeric data types as expressed in the RM are quite complex which leads to some
confusion by programmers. For instance, there are three levels of attributes for a floating point type: those
that depend upon the model number, those that depend upon the safe numbers, and those depending upon
the underlying machine.

ISO/SC22/WG11 has a work item on language independent data types. It is the intention of this group to
separate off numeric data types and provide a standard on this. A proposal is currently available of this
entitled "Language Compatible Arithmetic Standard” (LCAS). The proposal provides a secure model for
computation.

The Ada numeric model allows some insecurities. For instance, if MACHINE OVERFLOWS is false, no
exception is necessarily raised when computed values lie outside the range of safe numbers. This is
unsatisfactory since it is not practical to ensure algorithms are overflow free when using floating point. The
LCAS guarantees that such insecurities are detected.

The Ada version of the Brown model gives rise to some flexibility which implementations do not require
(such as indeterminate rounding). The LCAS avoids this, and hence is superior. Since the LCAS is

language independent, it provides a standard which can be common to many programming languages, thus
being easier for programmers to understand.

IMPORTANCE: ADMINISTRATIVE
CURRENT WORKAROUNDS:

Use Ada 83, but ensure that MACHINE_OVERFLOWS is true for all data types used in an application.
Train all programmers in the complexity of the numeric model to avoid pitfalls.

POSSIBLE SOLUTIONS:

Revise the Ada numeric facilities to take into account the LCAS. This could take a number of forms:

3-160
Supplement 1

Ada 9X Revision Request 0731

1. Ensure compatibility between LCAS and 9X, referencing LCAS when necessary.
2 Revise the Ada floating point model to simplify its description in the light of LCAS.
3. Revise the Ada numeric facilities significantly so that the language itself is simpler, not just

the description.

It is a requirement of any standard, including Ada, to reconcile it with standards in the same area (such as
the source text encoding of Ada programs and ISO 646 (ASCII)). In this case, the two relevant standards
are Ada and LCAS. The 9X revision and LCAS are being done in the same time-frame. Hence the
revision option 1 above would appear to be a requirement of the standardization process.

3-161
Supplement 1

Ada 9X Revision Requests 0188

ADA DEBARS UNSIGNED INTEGERS
DATE: August 9, 1989
NAME: W B Keen

ADDRESS: Plessey Avionics
Martin Road, Havant

Hants P09 SDH
Britain
TELEPHONE: +44 794 833483

ANSI/MIL-STD-1815A REFERENCE: 354, 3.5.7
PROBLEM:

Microprocessors allow the interpretation of binary values as signed and unsigned integers, but Ada debars
the latter. In our experience it is the unsigned interpretation which is more common, and the loss of this
capability limits the applicability of Ada to embedded software, and its acceptance by software engineers.
Associated with this, is the lack of bit-wise logical operations on integer types.

IMPORTANCE: ESSENTIAL
Ada will not be accepted as the language for embedded systems unless this glaring oversight is remedied.

CURRENT WORKAROUNDS:

Where the target architecture supports a long_integer type, limited utility is gained by type declarations of
the following kind:

type UNSIGNED_WORD is range 0..65535;
for UNSIGNED_WORD'size u- > 16;

However the base type of this type is long_integer and all operations on objects of this type are those of
long_integer. Also, no such half-measure is available for unsigned variables of the size of long_integer.

POSSIBLE SOLUTIONS:

Extension of the Ada number system to provide unsigned base types.

3-162
Supplement 1

Ada 9X Revision Requests 0228

FLOATING POINT PRECISION .
DATE: May 31, 1989
NAME: Eric C. Aker

ADDRESS: Link Flight Simulation Division of CAE-Link Corporation
1077 E. Arques Avenue
Sunnyvale, CA 94088-3484
TELEPHONE: (408) 720-5212
ANSI/MIL-STD-1815A REFERENCE: 35.7

PROBLEM:

Ada allows you to specify precision in floating point and accuracy is promised to be to the extent of
precision or better. The precision must be specified in decimal digits for Ada. LRM 3.5.7.

This is a problem because binary precision does not convert directly to decimal precision.
EXAMPLE:

In Ada an IEEE single precision floating point number with maximum precision is
type NUMBER is digit 6 [range L .R |

6 digits gives you precision of one part in a million 1/1_000_000 .
The IEEE format is
sign exponent mantissa
1 8 23 = 32 bits

The precision of course is a function of the mantissa only. It is one in 2**23 = 1/(2**23) = 1/8_388_608.

This lead to the situation in which the Ada compiler is allowed to round to 1/1_000_000. My specification
calls for 23 bits and Ada will only promise 20 bits 1/(2*20) = 1/1_D48_576.

If 7 digits is used a compiler using IEEE float forces me to use Double Long which is not what [want.

Conclusion: Ada by having a numeric specification in decimal does not allow full use of a machine
dependent binary formats.

IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS: NONE
POSSIBLE SOLUTIONS:

Every place that it says digits add optional [BITS].
floating_accuracy_definition ::= DIGITS [BITS] static_simple_expression
type T is digits [bits] d[B] [range L.R]

3-163
Supplement I

]

Ada 9X Revision Requests 0304

PERMIT ’RANGE FOR SCALAR TYPES

DATE: August 27, 1989
NAME: Elbert Lindsey, Jr.
ADDRESS: BITE, Inc.

1315 Directors Row

Ft. Wayne, IN 46808
TELEPHONE: (Z1y) 129-4104
ANSI/MIL-STD-1815A REFERENCE: 3.5(7-9), 3.6.2(7)
PROBLEM:
"RANGE is defined for array types but not for scalar types.
IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS:
Use 'FIRST.’LAST.
POSSIBLE SOLUTIONS:

The definition of '/RANGE for array types [3.6.2(7)] is given in terms of 'FIRST and 'LAST and actually
yields the indices of the array (scalar values). It seems consistent to allow the attribute 'RANGE to apply
to scalar types. This wnuld allow, for example,

for INDEX in SOME_SCALAR_TYPE'RANGE loop

which is certainly readable.

3-164
Supplement 1

Ada 9X Revision Request 0425

OPEN RANGES FOR REAL TYPES

DATE: August 1, 1989
NAME: J G P Barnes (endorsed by Ada UK)

ADDRESS: Alsys L
Newtown Road
Henley-on-Thames
Oxon, RG9 1EN, UK

TELEPHONE: +44-491-579090
ANSIYMIL-STD-1815A REFERENCE: 3.5.7,35.9, 96
PROBLEM:

Ranges in Ada are always closed ranges (that is included their end values). There are a number of
situations where a range which is open at one or both ends would more properly
express the requirements of an application.

Open ranges need only apply to real types since their mathematical relevance only applies to continuous

ranges and not to discrete ranges. Although an implementation of a real type will inevitably use a discrete

set of values and not a continuous set, nevertheless the actual discrete set is not easily expressed. Open

ranges would enable a requirement to be stated in a concise and portable manner.

An example occurs in the package CALENDAR where the range of seconds in a day is expressed as
subtype DAY_DURATION is DURATION range 0.0. .. 86_400.0;

The intent was that the value 86_400.0 should not be used, but should be expressed as 0.0 on the following

day. The range should thus express 0<= x < 86,400 in mathematical terms. However, no closed upper

limit can conveniently be chosen. Even

range 0.0. .. 86_600.0 - DURATIONS’SAFE_SMALL

is no good since there is no guarantee that 86_400.0 is a safe number of DURATIONS anyway (although
it almost inevitably will be).

The reader will think of many other instances from his or her own application area where an open range
expresses the true requirement. Note that a similar situation occurs in membership tests such as

x in a.b
IMPORTANCE: IMPORTANT
Not vital but would be nice and might be useful in tidying up various fixed point problems.

CURRENT WORKAROUNDS:

3-165
Supplement I

Ada 9X Revision Request 0425

Various fiddles can be used especially if portability is not important. In many cases explicit tests will need
to be inserted because the built-in range check is not correct.

Thus, if we want a <= x < b then we can write:
x: REAL range a .. b;
but if we really want to ensure that x does not take on the value b, we have to do something like

declare
TEMP: REAL,;
begin
TEMP:= <new_value>;
if TEMP = b then
raise CONSTRAINT_ERROR;
end;
x:= TEMP;
end;

rather than simply

X:= <new value>;

POSSIBLE SOLUTIONS:

A possible notation would be to use a trailing + after a lJower bound or a trailing - after an upper bound
to indicate that the bound is open. For example:

X: REAL range a .. b;
Y: REAL range a+.. b;
Z: REAL range a+.. b-;

An alternative might be to use the <and> symbols possibly replacing one of the dots so that the three
lines above could be:

X: REAL range a..<b;
Y: REAL range a>..b;
Z: REAL range a>..<b;
or
X: REAL range a.<b;
Y: REAL range a>.b;
Z: REAL range a><b
REFERENCES:

See Al-00196 regarding DAY_DURATION.

3-166
Supplement 1

—_—

Ada 9X Revision Request 0636

FLOATING POINT NON-NUMERIC VYALUES ("NAN’S")

DATE October 28, 1989

NAME: Henry G. Baker

ADDRESS: Nimble Computer Corporation
16231 Meadow Ridge Way
Encino, CA 91436

TELEPHONE: (818) 501-4956
(818) 986-1360 FAX

ANSI/MIL-STD-1815A REFERENCE: 357,358, 45
SUMMARY:

Many hardware and software implementations of floating point arithmetic offer some representation patterns
which do not correspond to numbers. These patterns can be useful in pipelined arithmetic units to avoid
having to "drain the pipeline” on the occasion of certain situation--e.g. divide-by-zero, overflow or underflow.
However, the Ada standard does not say how to deal with these objects, or what they mean. we do not
propose any particular solution, but bring it up as an issue.

Ada is also not specific enough about the properties of floating point arithmetic, especially where certain
optimizations are involved. We propose certain obvious optimizations that should always work, because they
help the characterize the implementation of the floating point operations more exactly.

SPECIFIC REQUIREMENTS/SOLUTION CRITERIA:

The Ada language should be more specific about what constitutes a floating point number, and what
operations are required to be defined for them.

We recommend that the set of floating point numbers of a particular base floating point type should be
capable of the following operations:

* they should be totally ordered by the "<” operation; i.e., for all xy, exactly one of x<y, x>y, X=y
is true.
* x+0.0, x-0.0 cannot fail, and x+0.0=x-0.0 =x (i.e. they have the same bit pattern).
* x-x cannot fail, and x-x=0.0 (i.e. they have the same bit pattern).
* x*1.0 cannot fail, and x*1.0 = x (i.e. they have the same bit pattern).
* x/1.0 cannot fail, and x/1.0=x (i.e. they have the same bit pattern).
* x*(1.0) = x/(-1.0) = -x (i.e. they have the same bit pattern).
* -(-x) = x (i.e. they have the same bit pattern).
3-167

Supplement 1

Ada 9X Revision Request 0636

CURRENT WORKAROUNDS:

If an implementation of Ada naively calls on a built-in hardware or software floating point instruction or
routine, it might generate values which are not considered "numbers" by Ada. Ada should specifically
disallow these values, or explain what to do with them if they are allowed.

If the set of floating-point numbers of a floating-point base type is not totally ordered, then subranges are
not well-defined, and range constraints cannot be efficiently performed. Tricotomy is the law that states
that in a totally ordered set of numbers, there are only three possibilities when comparing two numbers x,y-
-either x<y, x>y, or x=y. It should not be possibie that none of the three holds between two numbers.

Certain compiler optimizations are disallowed, unless the most basic mathematical identities of arithmetic
are preserved. The list given above is a minimal set.

This proposal can be thought of as an extended interpretation of Steelman requirement 3-1A and 3-1B.
NON-SUPPORT IMPACT:

Difficulties in writing portable and/or efficient code. Impossibility of performing certain types of static
program analysis, including many obvious optimizations.

POSSIBLE SOLUTIONS:

The simplest solution is to disallow "not-a-numbers” (NaN’s), but this would negatively impact many
pipelined hardware systems.

DIFFICULTIES TO BE CONSIDERED:

Our proposal is at slight odds with the IEEE floating point proposals when it comes to comparisons, but
it is more in line with the goals of the Ada language.

REFERENCES:

IEEE floating point standard

3-168
Supplement I

Ada 9X Revision Request 0637

THE STATUS OF FLOATING-POINT "MINUS ZERO"
DATE: October 28, 1989
NAME: Henry G. Baker

ADDRESS: Nimble Computer Corporation
16231 Meadow Ridge Way
Encino, CA 91436

TELEPHONE: (818) 501-4956
(818) 986-1360 FAX

ANSI/MIL-STD-1815A REFERENCE: 357, 457

SUMMARY:

The Ada standard appears to disallow the concept of "negative zero". All references to (floating point) zero
appear to regard it as a single object, with no concept of sign. If a representation has a bit-pattern which
corresponds to -0.0, should that bit-pattern ever appear as the result of a computation, or should it be
immediately canonicalized to +0.0? If the bit-pattern corresponding to -0.0 is allowed to be manipulated,
what is the result of comparing -0.0 with +0.0? We propose that an implementation function as if -0.0 did
not exist; i.e. either it always canonicalizes, or arranges all operation to treat _0.0 exactly the same as if it
had been +0.0.

SPECIFIC REQUIREMENTS/SOLUTION CRITERIA:

The concept of negative zero is an algebraic abomination, and clutters up program verification routines for
no apparent gain. We propose that the Ada standard tighten up the language so that no possible ambiguity
exists about the non-existence of negative zero.

CURRENT WORKAROUNDS:

One of the goals of Ada is the validation and verification of software before it is delivered into an
embedded system. This may require sophisticated algebraic and theorem proving techniques which are based
on standard mathematical models. Mathematics has no concept of a negative zero, so allowing for the
existence of such an object would complicate the job of a verification/validation tool enormously, yet only
the most obscure rationale can be given for allowing the existence of a negative zero. We feel that the Ada
community would be better served by not allowing the negative zero, to increase productivity of these tools.

Steelman requirement 3-1B can be interpreted as requiring compliance with this proposal.
NON-SUPPORT IMPACT:
Continuing proliferation of unneeded complications for no apparent gain.

POSSIBLE SOLUTIONS:

The two possible solutions are "continuous canonicalization®, so that -0.0 never appears as a result or is ever
stored into a variable, or "equivalencing®, so that -0.0 is always treated exactly the same as +0.0 in all

3-169
Supplement I

Ada 9X Revision Request 0637

calculations.
DIFFICULTIES TO BE CONSIDERED:

This proposal is at slight odds with the IEEE floating point proposal, but the goals for Ada are different
from those of the IEEE standard.

REFERENCES:

IEEE floating point standard

3-170
Supplement 1

Ada 9X Revision Request 0492

SUPPRESS THE BINDING BETWEEN MANTISSA AND EXPONENT
SIZE IN FLOATING POINT DECLARATIONS

DATE: October 23, 1989

NAME: Mats Weber

ADDRESS: Swiss Federal Institute of Technology
EPFL DI LITh
1015 Lausanne
Switzerland

TELEPHONE: +41 21 693 42 43

E-mail : madmats@elcit.epfl.ch

ANSI/MIL-STD-1815A REFERENCE: 357
PROBLEM:

The definition of the range of the exponent for model numbers of a floating point type (using 4*B, why
4 ?) creates an unnecessary binding between mantissa and exponent size.

This obliges some implementations to define types with less precision than the underlying hardware types
only because of the constraint on the exponent size. For example, the D_Float floating point type on VAX
processors must be defined as digits 9 just because it has a small exponent range, but its actual precision
is 16 digits.

IMPORTANCE: IMPORTANT

CURRENT WORKAROUNDS:
Writing non-portable programs that rely on T"Machine_Mantissa
POSSIBLE SOLUTIONS:

Separate the precision and exponent range specifications in floating point declarations, because they really
are separate attributes of a floating point type. This would allow declarations such as

type Narrow_Exp is digits 16 exponent -30..30;
which should be a type with 16 digits of precision ranging at least from +1.0E-30 to +1.0E30 (the same

for negative values).
The exponent part of the declaration could be made optional, using the Ada 83 rules as the default.

3-171
Supplement I

Ada 9X Revision Request 0720

THE FLOATING POINT MODEL NEEDS TO BE IMPROVED
DATE: October 30, 1989
NAME: Jon Squire (topic requested by SIGAda NUMWG)

ADDRESS: 106 Regency Circle
Linthicum, MD 21090

TELEPHONE: (301) 765-3748
E-mail: jsquire@ajpo.sei.cmu.edu

ANSI/MIL-STD-1815A REFERENCE: 357

PROBLEM:

To enhance robusiness and portability of numeric programs, Ada incorporated the Brown model into the
language definition. This was to serve as a rigorous semantic definition of floating point arithmetic for both
compiler writers and numerical programmers. The Brown model, however, was originally proposed to
conveniently describe all existing floating point hardware. The model is not an ideal environment for
numerical programs. Consequently, the model accommodates the worst of all existing machines. More
pathologically, because of the simplicity of the model, it actually admits hypothetical systems that are much
worse than existing machines.

Many numerical algorithms that exploit the full capabilities of floating point computations can not be
portably implemented in Ada. A detailed discussion on this problem together with some solutions is in the
process of being written. [1]

[1] "On improvement of Ada’s usage of the Brown model", P.T.P.Tang, Argonne National Labs,
work in progress.

We will only highlight some aspects of the problem here. Central to the problem are the two accuracy
axioms found in ARM 4.5.7(4) and 4.5.7(10). One effect of these axioms is that the value of any floating
point number is never known exactly. This in turn causes several anomalies in various aspects of numerical
programming.

One anomaly is that numerical algorithms may not be able to simulate discontinuity closely.
For example:

if X <= 1.0 then
F := expression_l;
else
F := expression_2;
end if}
F may get expression_1 even when the value of X is slightly bigger than 1.0.

Another similar example using supposedly careful code

if X >= 0.0 then
Y := SQRT(X);

3-172
Supplement I

Ada 9X Revision Request 0720

else
-- special action
end if,

unfortunately, the model does not now protect SQRT from receiving a negative argument.

Along the same lines of inaccurate comparison, is ironic that cven though model numbers are special values,
no portable test can determine if a value X is a model number.

Another anomaly is that the property of exact subtraction can not be supported. In shoii, many robust
numerical programs need to exploit the fact that the statement C:= A - B; will be coded to produce the
exact value of A - B, whenever both are positive and the result is representable as a machine rumber. In
the current model, such a numeric property is not even well defined when either A or B is not a model
number.

Yet another anomaly is that error analysis on computations such as Y := FUNCT(X); is necessarily
pessimistic whenever the slope of the function is steep. Pessimism is due to the fact that non model number
X has an inherent uncertainty. On the other hand however, FUNCT would receive an unchanged machine

value as input, hence reasonable implementations of FUNCT would in fact be much more accurate than
the error analysis according to the model would suggest.

IMPORTANCE: IMPORTANT

It is less than desirable to have a model definition that is not as tightly specified as other parts of the
language.

CURRENT WORKAROUNDS:
Do not insist on formal error analysis based on floating point model.

POSSIBLE SOLUTIONS:

Little or no changes will be required of compilers. This is close to being an administrative change.

3-173
Supplement I

Ada 9X Revision Request 0564

SAFE NUMBERS FOR FLOATING POINT TYPES
DATE: September 21, 1989
NAME: Stephen Baird

ADDRESS: Rational
3320 Scott Blvd.
Santa Clara, CA 95054-3197

TELEPHONE: (408) 496-3600
ANSI/MIL-STD-1815A REFERENCE: 35.7(9)
PROBLEM:

According to 3.5.7(9), the safe numbers of a floating point base type "have the same number ... of mantissa
digits as the model numbers of the type". This seems wrong; the safe numbers should be defined in terms
of a new attribute, TSAFE_MANTISSA, which is required to be greater than or equal to MANTISSA.

This would give an impiementation the option of specifying a larger set of safe numbers than is currently
possible, not only in the case where the number of mantissa bits (of the machine representation) is large
relative to the number of exponent bits, but also in the case where the number of mantissa bits happens
to fall between two members of the set of possible values of TMANTISSA (i.e, the set of numbers of the
form 1 + ceiling (D*log(10)/10g(2)), where D is an integer in the range 1.. System.Max_Digits).

Increasing the set of safe numbers to more closely coincide with the set of machine-representable numbers
will also increase the utility of the MACHINE_OVERFLOWS attribute by increasing the probability that
the largest representable value will be a safe number (if the largest representable value is not a ~afe number,
and if that value might potentially be returned as the result of an arithmetic opera..on, then the
MACHINE_OVERFLOWS attribute must be faise).

IMPORTANCE: IMPORTANT

CURRENT WORKAROUNDS:

POSSIBLE SOLUTIONS:
Procedure example is
X: array (1.4) of P;
Flag: Boolean;
procedure P4 (X: Natural) is ...;
X(1) := P4; -- Illegal, lifetime of P4 is shorter than that of type P.

X?) :

P3; -- Illegal, parameter profile of P3 does not match that of P.

X3 :

P2; -- Legal, but raises constraint error since the constraints on the parameter

3-174
Supplement 1

Ada 9X Revision Request 0564

subtypes of P2 do not match those of P.
X(4) := P1; -- Legal, no constraint error.
X(4) (17); -- A call to the current value of X(4), ie., P1.

Flag := F1 + F2; --Illegal, ambiguous use of "="
end Example;

Remaining issues that seem straightforward, but need to be resolved, include interactions with subprogram
renames, parameter passing rules for parameters of subprograms types, subtypes and derived types.

3-175
Supplement 1

Ada 9X Revision Requests 0255

TEPSILON IS INADEQUATE FOR REAL, FLOATING POINT NUMBERS
DATE: May 21, 1989
NAME: J. A. Edwards

ADDRESS: General Dynamics
P.O. Box 748 MZ 1746
Fort Worth, Texas 76101

TELEPHONE: (817) 763-2612
ANSI/MIL-STD-1815A REFERENCE: 3538
PROBLEM:

TEpsilon is not uniform throughout the range of floating point numbers. For example, for a large negative
exponent the delta is very small, e.g., the width of the mantissa times the exponent. For very large numbers,
large positive exponent, the numbers are far apart. An epsilon between one number and the next for a
medel number [sic] is useless. T’epsilon is not applicable in the majority of algorithms requiring either fine
precision or gross precision.

IMPORTANCE: IMPORTANT

Ada just does not map to any floating point machine model efficiently. The provisions are not available
to support numeric applications for embedded computers in a highly productive manner.

CURRENT WORKAROUNDS:

Acquire a special math pack. Ignore the excessive built in functions for the attributes of floating point
types and use the objects from the math pack.

3-176
Supplement I

e ————————————————————————

Ada 9X Revision Request 0346

DETERMINATION OF MANTISSAS AND EXPONENTS FOR REAL NUMBERS ‘
DATE: September 26, 1989
NAME: Bradley A. Ross

ADDRESS: 705 General Scott Road
King of Prussia, PA 19406

TELEPHONE: (215) 337-9805
E-mail: ROSS@TREES.DNET.GE.COM

ANSI/MIL-STD-1815A REFERENCE: 3538
PROBLEM:

When dealing with real numbers, there should be a defined procedure for obtaining the mantissa and
exponent directly from the value of the number in an implementation-independent manner
without having to carry out exponential or logarithmic calculations.

This would enable any real number to be quickly factored into two values, one of which would be an exact
power of the radix and the other a number with a small absolute value. By using approximations that are
good over the range of the mantissa, it is possible to carry out many numerical functions with a minimum
of calculations.

As an example, imagine that the desire was for the natural logarithm of 1126.4, which is equal to .
1.1*(2**10). By breaking the value into the mantissa and exponent, the value can be expressed as the

natural logarithm of 1.1 plus ten times the natural logarithm of 2. This is a much easier set of values to

calculate than trying to take the logarithm of the original value directly.

IMPORTANCE: IMPORTANT

I believe this feature would be a great aid in the efficiency of "number crunching" code and should require
minimal effort for implementation,

CURRENT WORKAROUNDS:

The only implementation-independent means that I know of is to repeatedly divide the value by the radix
repeatedly until the quotient has an absolute value less than the radix. This assumes that the absolute value
of the original value was greater than one. If the absolute value was less than one, the value would be
multiplied by the radix until the product was greater than one. Not only is this time consuming, it also
introduces round-off error into the calculation

POSSIBLE SOLUTIONS:

The simplest solution would be to add two predefined functions to the language definition with the calling
sequences

function EXPONENT (VALUE : in universal_real) return INTEGER; .

3-177
Supplement |

Ada 9X Revision Request 0346

. function MANTISSA (VALUE : in universal_real) return universal_real;

Addition of this requirement to the language specification should be a very simple task for implementation.

3-178
Supplement 1

Ada 9X Revision Request 0348

OPERATIONS ON REAL NUMBERS
DATE: September 26, 1989

NAME: Bradley A. Ross

ADDRESS: 705 General Scott Road ?
King of Prussia, PA 19406 i

TELEPHONE: (215) 337-9805
E-mail: ROSS@TREES.DNET.GE.COM

ANSIMIL-STD-1815A REFERENCE: 358
PROBLEM:

Predefined functions should be added to the language definition to support the trigonometric and
exponential functions, as well as some of the other commonly used mathematical functions. In addition, a
subtype of REAL shouid be established for angles in radians.

This would appear to be a reasonable subject for the Ada language specification since these functions are
used in a wide variety of programs.

IMPORTANCE: IMPORTANT

Trigonometric and logarithmic calculations are used in a wide variety of programs. Failure to provide a
common definition for the interfaces will tend to result in multiple packages being

used for numeric calculation, resulting in redundant code in the applications. This will not only increase
the programming effort, but will also reduce maintainability and the ability

to modify the code.

CURRENT WORKARGUNDS:

The current workaround is to have these functions redefined by each organization wishing to use them in
their code, Although there are some organizations offering Ada packages for mathematical funct.ons, there
is no requirement for coordination between them.

POSSIBLE SOLUTIONS:

Many of these functions are already defined in the FORTRAN language specification, and the bulk of the
calling sequences could be lifted directly from this document.

Implementation would not appear to be a difficult matter since numerous algorithms for detcrmmmg these
functions have been published.

Even if it was decided that there was no need for the subroutines to be made mandatory, the format should
be fixed so that any subroutines used for these functions will follow the same format,

3179
Supplement [

Ada 9X Revision Request

ENTIER FUNCTIONS ON REAL TYPES
DATE: September 25, 1989
NAME: Bryce M. Bardin

ADDRESS: Hughes Aircraft Company
Ground Systems Group
P.O. Box 3310, M/S 618/M215
Fullerton, CA 92634

TELEPHONE: (714) 732-4575
E-mail: BBardin@ajpo.sei.cmu.edu

ANSI/MIL-STD-1815A REFERENCE: 3538, 35.9

PROBLEM:

For applications reguiring entier functions, there is no way to obtain an efficient solution in Ada.
IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS:

Use a generic function, e.g.:

generic
type Real is digits <>;
type Int is range <>;
function Entier (Value : Real) return Int;

function Entier (Value : Real) return Int is
I: Int := Int(Value);
R : Real := Real(]);
begin
if Value >= 0.0 then
if R > Value then

I:=1-1;
end if,
else
if R < Value then
I:=1+1,
end if;
end if;
return [;

end Entier;

(Note: a similar generic workaround can be provided for fixed-point types.)

3-180
Supplement I

Ada 9X Revision Request 0454

This function depends on explicit conversion and is clearly less efficient than a built-in function in the
language would be. In addition, this function must be instantiated tediously for each floating-point and
integer type pair, in most cases producing redundant code bodies because generic bodies are not usually
sharable.

POSSIBLE SOLUTIONS:
Provide an efficiently-implementable attribute for every real type:
P’Entier For a prefix P that denotes a real type:
This attribute is a function with a single parameter. The actual parameter X must be a value of

the base type of P. The resuit type is the type universal_integer. The value is the usual entier
function of the actual parameter.

2181
Supplement I

MAda 9X Revision Request 0664

ADDING ATTRIBUTES 'IMAGE AND 'VALUE TO FLOATING POINT TYPES
DATE: August 18, 1989
NAME: Goran Karlsson
ADDRESS: Bofors Electronics AB
Nettovagen 6

S-175 88 Jarfalla
Sweden

TELEPHONE: +46 758 222 90
ANSI/MIL-STD-1815A REFERENCE: 3538

PROBLEM:
Inconsistency between attributes of floating point discrete types.

IMPORTANCE: ADMINISTRATIVE

CURRENT WORKAROUNDS:
Writing two functions to do the work.

POSSIBLE SOLUTIONS:

3-182
Supplement I

Ada 9X Revision Requests 0191

MANTISSA OF FIXED POINT TYPES UNREASONABLY SMALL
DATE: August 20, 1989
NAME: James W. McKelvey

ADDRESS: R & D Associates
P.O. Box 5158
Pasadena, CA 91107

TELEPHONE: (818) 397-7246
ANSI/MIL-STD-1815A REFERENCE: 359, 6
PROBLEM:
The LRM is too lax in it definition of B, the mantissa required for a fixed point type. Example:
type F_Type is delta 0.3 range 0 .. 1.1;
Two different Ada compilers came up with the following:
Mantissa 2 bits
Large 0.75
Small 0.25
This defines the model numbers 0.0, 0.25, 0.50, and 0.75. What happened to 1.0? The answer to be found
in (3.5.9, 6), which states "the value of B is chosen as the smallest integer number for which each bound
of the specified range is either a model number of lies at most small distant from a model number”. So,

since 1.0 is exactly small distant from 0.75, it need not be a model number, and the mantissa need only be
2. 1 submit that 1.0 should "obviously" be a model number, and a mantissa of three is required.

IMPORTANCE: IMPORTANT .

CURRENT WORKAROUNDS:

Be extremely careful in defining fixed point types.

POSSIBLE SOLUTIONS:

Change the working in (3.5.9, 6) to read "or lies less than small distant from a model number". Also, add
a note after (3.5.9, 17) which states that "The range of model numbers must extend as close to the bounds

of the range constraints as is possible under the definition of model numbers". Furthermore, "For a fixed-
point type T, T'First and TLast will be model numbers of T .

3-183
Supplement I

Ada 9X Revision Requests 0256

FIXED POINT SCALING AND PRECISION
DATE: May 21, 1989
NAME: J. A. Edwards

ADDRESS: General Dynamics
P.O. Box 748 MZ 1746
Fort Worth, Texas 76101

TELEPHONE: (817) 763-2612
ANSI/MIL-STD-1815A REFERENCE: 35.9
PROBLEM:

The Ada concept of rational or expressions for binary representation for range and precision makes it
difficult to determine the amount of precision and the scale factors for an application program. Allowing
the compiler and runtimes to decide the representation is highly error prone and is not easily controllable.
Most of the decimal representations are inexact therefore a binary version will be the most frequently used
version. Here, a scale factor would have been more useful. Further, embedded computers use fixed point
primarily for speed and accuracy. The algorithm precision is masked by the decimal representation for the
specification. The programmer is forced to write an expression to compute scale factors and deltas when
it would be easier to recognize in a binary format with length specifier and scaling.

IMPORTANCE: IMPORTANT

Very important to embedded applications where finer precision than floating point is needed. The compiler
vendor is not able to recognize all the special cases in the expressions, e.g., 2**16-1 rather than something
like sign & length (15), to determine when only shifts and masks are necessary and the binary representation
is exact.

CURRENT WORKAROUNDS:

Write many expressions for well known static constants that the compilation system may or may not be
able to use to any advantage.

POSSIBLE SOLUTIONS:

1. Remove the wording for model/safe numbers.

2. Provide binary expressions, such as binary length and scale, for control of DELTA/RANGE
precisely.

3. Allow the compiler to support efficiently single and double precision fixed point and control

scaling/masking for the more frequently used representations in embedded applications, e.g.,
fractional form.

3-184
Supplement I

Ada 9X Revision Request 0565

DETERMINING 'SMALL FOR FIXED POINT TYPES
DATE: October 21, 1989
NAME: Stephen Baird

ADDRESS: Rational

3320 Scott Blvd.
Santa Clara, CA 95054-3197

TELEPHONE: (408) 496-3600
ANSI/MIL-STD-1815A REFERENCE: 359

PROBLEM:

The effects of a representation clause should be transparent to a program which is written entirely in Ada
(with no Machine_Code insertions) and does not use implementation-dependent features such as
Unchecked_ Conversion, Representation Attributes, or System.Address. Time and space requirements of the
program may be affected, but otherwise the program should behave the same with or without a
representation clause.

The one unfortunate exception to this rule is a length clause specifying T"Small for a fixed point type.

For example, removing the length clause from
type T is delta 0.01 range 0.0 .. 1000.0;
for T"Small use 0.01;

X: T:= 0.0
begin
for Iin 1 .. 100 loop
X:=X + 0.01;
end,
if X not in 0.9 .. 1.1 then
raise Program_Error;
end if,

will probably cause the program to fail because each iteration through the loop may then increment X by
any value between 1/128 and 1/64.

One should not have to resort to representation specifications in order to get a fixed point type T such that
T°Small is not a power of two.

IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS:

Use representation specifications.

3-185
Supplement 1

Ada 9X Revision Request 0565

POSSIBLE SOLUTIONS:
Given a fixed point type declaration of the form
type T is delta D range L .. R;

the implementation should be required to either select a bascype such that T'Delta is an integral multiple
of T'Base’Small or reject the declaration of T. T°Small should be defined to be equal to T'Delta.

Given a fixed point constraint occurring in a subtype indication, such as
subtype S is T deita D2 range L2 .. R2;
S’Small should be defined as the largest integral multiple of T'Delta that is less than or equal to D2.

Note that these two rules preserve the equivalence given in 3.5.9(8-9).

3-186
Supplement

Ada 9X Revision Request 0733

UNIFORM REPRESENTATION OF FIXED POINT PRECISION FOR ALL RANGES ‘
DATE: November 2, 1989
NAME: Edward Colbert

ADDRESS: Absolute Software Co., Inc.
4593 Orchid Dr.
Los Angeles, CA 90043-3320

TELEPHONE: (213) 293-0783
ANSI/MIL-STD-1815A REFERENCE: 359, 13.2(11 & 12), 13.7.1(6)

PROBLEM:

Paragraph 3.5.9(4) states: "A canonical form is defined for any fixed point model number other than zero.
In this form: sign is either +1 or -1; mantissa is a positive (nonzero) integer; and any model number is a
multiple of a certain positive real number called small, as follows:

sign * mantissa * small

Paragraph 3.5.9(6) states: "For a fixed point constraint that includes a range constraint, the model numbers
comprise zero and all multiples of small whose mantissa can be expressed using exactly B binary digits"

Paragraph 13.7.1(6) defines System.Fine_Delta as the smallest delta allowed in a fixed point constraint that '
has the range constraint -1.0 .. 1.0.

These paragraphs prevent the representation of an asbtraction that involves are range of values such as 100.0
.. 102.0 as a fixed point type with the same precession as the range -1.0 .. 1.0. For example:

type Sensor_Type is delta System.Fine Delta range 100.0 ..102.0;

In many situations, a required precision will not be supported for a range of required values because values
must be represented as just a multiple of small.

IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS:

Define an abstract type such as the following:

with System;
package Sensor
is

-- Define types to support a Sensor Value range of100.0 .. 100.1
-- which is accurate to the Maximum Accuracy of the System

3-187
Supplement I

Ada 9X Revision Request

0733

type Value_Range_Typeis delta System.Fine_Delta range 0.0 ..

type Value_Offset_Type is range -100 .. 100;

-- Base Offset of physical sensor
Base_Offset: constant Value_Offset_Type

.o

100,
type Value_Type is private;

-- Define Identity values for math operations

Zero: constant Value_Type;

One: constant Value_Type;

-- Define math operations, relational operations, image
-- operation, etc.

private

type Sensor_Type is

record
Base_Value: Value_Range_Type;
Offset: Offset_Type;
end record;
end Sensor;

POSSIBLE SOLUTIONS:

Redefine the canocal form of a fixed point type be:

sign * mantissa * small + offset

1.0;

Make the necessary adjustments to the fixed point operators (e.g., for the Scale_Type defined above, given
that Scale_Type’Small = 0.1, then it must be true that 100.0 + 0.1 = 100.1).

Add a representation specification for the offset of a fixed point type.

3-188
Supplement I

Ada 9X Revision Request 0357

DECIMAL .

DATE: September 18, 1989
NAME: Wesley F. Mackey

ADDRESS: School of Computer Science
Florida International University
University Park
Miami, FL 33199

TELEPHONE: (305) 554-2012
E-mail: MackeyW@servax.bitnet

ANSI/MIL-STD-1815A REFERENCE: 35.9(1-19), 13.2(11-12)
PROBLEM:

Ada does not handle packed decimal arithmetic properly as does PL/1 and Cobol. Two requirements are
necessary for packed decimai arithmetic: a decimal delta and a large range. This is a serious deficiency
in the language. PL/1 has solved this problem with binary and decimal attributes: binary(31.0) is integer;
binary(31,5) is delta 0.03125 in Ada. However, Ada has nothing which corresponds to decimal(9,2). There
is no need to distinguish between binary(31,0) and decimal(9,0)

IMPORTANCE: ESSENTIAL .

CURRENT WORKAROUNDS:

None that are attractive. Long_float could possitly be used, but the size of long_float is not well defined
and also leads to rounding errors. A multip.ecision package could be written, with type Money is private,
and represented as an array of integers, but multiprecisicr arithmetic is extremely difficult when the
language provides no access to the carry bit or to a double length product of two integers. Also, there is
no way to specify a literal of a private type.

—

POSSIBLE SOLUTIONS:
Consider the following declarations:

type Money is delta 0.01 range -999_999_999 999 999.99
- +999 999 999 999_999.99;

for Money’small use 0.01;

Firstly, the representation clause (at least for the DEC/VMS Ada compiler) generates an error stating that
001 is not a power of 2. If we omit the clause, then 1/128 will be used, in which case $1.00 = $0.78 due
(0 rounding error. Serondly, the type declaration produces an error stating that no predefined type is able
to satisfy these requirements. This is correct, but money measured in trillions of dollars is not completely
unreasonable in an application. One compiler, for example, will limit the range to -
21_474_836.4%..+21_474_836.47: $21 million is defi-itely inadequate.

3-189
Supplement I

Ada 9X Revision Request 0357

There are two amendments required of the language before this can be implemented properly: decimal
deltas, and large ranges for fixed point arithmetic.

Decimal deltas:

1. The language should be amended to allow the clause:
for Money’small use 0.01;
with a non power of 2 small. All compilers should be required to support this. The internal
representation should simply be an integer counting the number of 0.01 units (pennies).

2. Leave the small as currently implemented and add a new reserved word: DECIMAL. Then one
would say:
type Money is decimal 0.01 range -999_999 999 999 999.99

.. +999_999 999 999 999.99;

3. Introduce a new pragma into the language:
pragma decimal(Money);
would require the compiler to use a ’small which is a power of 10 and not of 2. It would suggest
to the compiler that packcd decimal arithmetic should be used, if available.

Large ranges:

4, All compilers should be required to implement double precision integer arithmetic for both binary
and decimal smalls. This can be done by multiple precision arithmetic routines, which, although
not efficient can do the job.

S. Alternatively: all compilers should have shipped with them a package Muitiprecise_Arithmetic
which uses arrays to represent multiple precision numbers with either decimal or binary points and
which provides all the usual arithmetic operators. It should probably be generic. Also, the language
would need a method of specifying literals for the private type to be exported by this package.

Recommendation:

Adding a new keyword to the language will inevitably cause some programs to fail and is not recommended
so much as other options.

The changes should be: Add pragma decimal as required to be implemented. In this case the 'small shall
be required to be a power of 2 instead of 10, making existing programs less likely to break. Require that
all implementations furnish decimal numbers of at least 18 digits or 63 bits. Do not require that packed
decimal be used, as long as multiple precision binary is available, although inefficient.

All existing packages (including TEXT_IO) should provide all features to the decimal types that are now
provided to the fixed types.

Objective:

Ada should be able to do anything PL/1 or Cobol can do, aad as easily.

3-190
Supplement I

Ada 9X Revision Request 0566

FIXED POINT MODEL NUMBERS

DATE: October 21, 1989
NAME: Stephen Baird
ADDRESS: Rational

3320 Scott Blvd.

Santa Clara, CA 95054-3197
TELEPHONE: (408) 496-3600
ANSI/MIL-STD-1815A REFERENCE: 3.5.9(6)
PROBLEM:

In 3.5.9(6), the text "at most" should be replaced with "less than".

In this example,
type T is delta (2.0 ** (-8)) range 0.0 .. 1.0;

this would mean that T"Mantissa would be 9, not 8, and that therefore 1.0 would be a model number of
T (currently, it is not). Currently, an implementation has the option of using an 8-bit representation for
objects of type T despite the fact that the user clearly desires that the type T include at least 257 distinct
values.

If a bound specified in a fixed point constraint is an integral multiple of the associated Small value, it seems
absurd for that bound to be excluded from the set of model numbers defined by the fixed point constraint.

IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS: NONE
POSSIBLE SOLUTIONS:

3-191
Supplement [

Ada 9X Revision Request 0507

MULTI-DIMENSIONAL ARRAY STORAGE
DATE: October 27, 1989
NAME: Jan Kok (on behalf of the Ada-Europe Numerics Working Group)

ADDRESS: Centrum voor Wiskunde en Informatica
P.O. Box 4079, 1009 AB Amsterdam-NL

TELEPHONE: +31 20 5924107
+31 20 5924199 (fax)
E-mail: UUCP: jankok@cwi.nl

ANSI/MIL-STD-1815A REFERENCE: 36
PROBLEM:

The way array components are associated with allocated memory resources is not defined in the language.
For Numerically Intensive Computing (NIC) applications it is very important that this storage mode is
known. The essential information is:

- for increasing index the values of the addresses where the components are stored should
change monotonically,

- for multi-dimensional array objects the storage mode is row major or column major or
otherwise:
a) for all multi-dimensional arrays the first index runs the fastest, then the next, etc.
(column major),
b) for all multi-dimensional arrays the last index runs the fastest, then the last but one, etc.
(row major),
¢) other storage methods (like for sparse matrices, or block storage),

- where there is an inefficiency difference in the way indexing is implemented, all compilers
should do this in the most efficient way.

We need this information because many linear algebra algorithms have both row-oriented and
column-oriented variants, and the efficiency of these variants depends strongly on the storage mode used.
It is urgently required that this information can be obtained, and it cannot be obtained now.

Additionally, the user also has no (implementation-independent) option to choose a preferred storage mode.
It can be imagined that some Ada implementations would allow both row major and column major matrix
storage and leave the choice to the user. We assume that in such cases it is not feasible to have the
possibility of choosing the storage mode for EVERY individual matrix object, but rather for all
muiti-dimensional array objects collectively. Then, if all matrices are stored the same way dead-code
elimination would be possible.

We do not want to require this additional facility, but only wish mention it here as a related issue that
would be nice to have it available.

IMPORTANCE: IMPORTANT

3-192
Supplement 1

Ada 9X Revision Request 0507

CURRENT WORKAROUNDS: NONE
The current approach is implementation-dependent.
POSSIBLE SOLUTIONS:

Preferably by an attribute for obtaining the information about the actual storage mode, or else through the
package SYSTEM. A type for the attribute could be:

type MATRIX_STORAGE_MODE is (ROW_MAJOR, COLUMN_MAJOR, OTHER);

The additionally mentioned control over the storage mode could be given through a representation clause
for setting the attribute to one of its possible values.

3-193
Supplement 1

Ada 9X Revision Requests 0156

UNIVERSAL EXPRESSIONS IN DISCRETE RANGES

DATE January 26, 1989

NAME: R. David Pogge

ADDRESS: Naval Weapons Center
EWTES - Code 6441
China Lake, CA 93555

TELEPHONE: (619) 939-3571
Autovon: 437-3571
E-mail: POGGE@NWC.NAVY.MIL

ANSI/MIL-STD-1815A REFERENCE: 3.6.1 paragraph 2
PROBLEM:

Ada allows range constraints with universal_integer bounds, but not with universal_expression bounds. That
is,

foriin 0.5 loop -- legal
for i in -5.5 loop -- illegal

IMPORTANCE: ADMINISTRATIVE
This is ADMINISTRATIVE because it makes the language more consistent and easier to learn.
CURRENT WORKAROUNDS:
Explicitly type the loop index.
for i in integer range -5..5 loop
POSSIBLE SOLUTIONS:
Insert the words "universal_expression" in 3.6.1 (2) so it reads,

"... if each bound is either a numeric literal, universal_expression, a named number..."

3-194
Supplement I

Ada 9X Revision Request 0567

OBTAIN CONSTRAINTS FROM A VARIABLE’S INITIAL VALUE ‘
DATE: October 21, 1989
NAME: Stephen Baird

ADDRESS: Rational
3320 Scott Blvd.
Santa Clara, CA 95054-3197
TELEPHONE: (408) 496-3600
ANSI/MIL-STD-1815A REFERENCE: 3.6.1(6), 3.7.2(8)
PROBLEM:
It would be useful if one could declare a variable of an unconstrained array type (or of a discriminated type
whose discriminant components lack default initial values) and obtain the variable’s constraints from the
(explicitly specified) initial value of the variable.

For example, the following should be legal:

type No_Default_discriminant . Value (D:Natural) is

record
F:String (1.. D);
end record; ‘
type Unconstrained_Array is array (integer range <>) of
Integer;

function Foo return Unconstrained_Array is ...;
function Bar return No_Default_Discriminant_Value is...;
package P is
Foo_Var : Unconstrained_Array := Foo;
Bar_Var : No_Default_Discriminant_Value := Bar;
-- note that Bar_Var'Constrained = True

end P;
IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS:

One frequently sees the following sort of workaround:
X : constant String := Other_Package.Some_Function;
Y : String (X’Range) :=X;

This is awkward and likely to be inefficient.

POSSIBLE SOLUTIONS:

3-195
Supplement 1

Ada 9X Revision Request 0598

FUNCTIONS, UNCONSTRAINED TYPES, AND MULTIPLE RETURN VALUES

DATE: October 19, 1989
NAME: James Lee Showalter, Technical Consultant
DISCLAIMER:

This Revision Request has been submitted to some amount of peer review by others at Rational, but it is
not an official Rational submission.

ADDRESS: Rational
3320 Scott Bivd.
Santa Clara, CA 95054-3197

TELEPHONE: (408) 496-3606 [11am-9pm]
ANSI/MIL-STD-1815A REFERENCE: 3.6.1(6), 3.7.2(8), 6.5(1)
PROBLEM:

When working with unconstrained types, functions are vastly superior to procedures, because their return
values can be used to provide the bounds for constants of the type:

declare
Some_Constant : constant Some_Unconstrained_Type :=
Some_Function_Returning_Unconstrained_Type;
begin
[process]
end;

Unfortunately, it is sometimes the case that a function returning an unconstrained type needs to also return
a status of some kind, and this is not well-supported by the current standard.

IMPORTANCE: ESSENTIAL
This problem with the language has no clean workaround.
CURRENT WORKAROUNDS:

Parameters to functions can be passed by reference (by passing a pointer to the actual parameter and
aliasing it internally as a local variable); since the pointer is not itself modified, this compiles.
Unfortunately, this is an awful thing to have to do, and a clearer solution should be provided by the
standard.

Alternatively, procedures can be used in place of functions, but this requires the programmer to guess ahead
of time how big to make a constrained buffer for the unconstrained type (this is necessary, for example, in
order to use the current Text_lo.Get_Line procedure); the actual bounds then have to be maintained by the
programmer.

3-196
Supplement 1

Ada 9X Revision Request 0598

Another strategy is to declare a record with a constraint:

type results (Size :Integer) is
record
Unconstrained_Field : Some_Unconstrained_Type
(1..Size);
Status : Some_Status_Type;
end record;

function Some_Function return Results;

Bar : Results := Some_Function;
POSSIBLE SOLUTIONS:

Several different approaches have been suggested:

* Permit parameters of mode OUT and IN OUT on functions. This would allow the problem
described above 1o be solved as follows:

function Returns_Unconstrained_Type
(And_This_Status : out Status_Type)
return Unconstrained_Type is ...

There are, however, lots of drawbacks to this solution, such as introducing side-effects and distorting
commutativity.

* Extend the syntax of the language to allow multiple values:?
function Some_Function return Some_Unconstrained_Type, Some_Status_Type;

declare

X : constant Some_Unconstrained_Type, Y : Some_Status_Type := Some_Function;
begin

[process]
end;

COMPATIBILITY:

The proposed solution is upward-compatible. All previously-compiled code will recompile successfully and
will behave identically during execution except for possible small changes in execution speed.

*This is just a sketch of the possibility, not a complete
fleshing out of a suggested syntax. It might be possible to make
this work with both positional and named association, given more
thought.

3-197
Supplement I

Ada 9X Revision Request 0713

PROVIDE A UNIFICATION OF CONSTRAINED AND UNCONSTRAINED ARRAYS
DATE: October 30, 1989
NAME: Jon Squire (topic requested by SIGAda NUMWG)

ADDRESS: 106 Regency Circle
Linthicum, MD 21090

TELEPHONE: (301) 765-3748
E-mail: jsquire@ajpo.sei.cmu.edu

ANSIMIL-STD-1815A REFERENCE: 3.6(2), 12.1(2)
PROBLEM:

There is a significant problem for users that write seemingly reasonable programs, have them "completed®,
then find a minor addition is needed. The problem is most severe when the minor addition can be
accomplished by instantiating a generic library package. (Applicable to numerical packages, graphical
packages, data base binding packages and many others.)

The other view of the problem is that of the generic library package writer: How can the generic library
package be writien to be most usable as an "after the fact nice add on?"

Consider the following fragment of a users working application:

package arrays is -- used by an average user
type P is digits 6;
type D is (North, East, Vertical);
type A_O is array(D, D) of P; -- all dimensions constrained OK
- type A_1 is array(D, POSITIVE range <>) of P; -- can not mix
- type A_2 is array(POSITIVE range <>, D) of P; -- can not mix type A_3 is array(POSITIVE range
<>, NATURAL range <>) of P; -- OK, but
type A_4 is array(D, NATURAL range 0..2) of P; -- both constrained
type A_S is array(1..3, D’first..D’last) of P; -- both constrained
end arrays;

Now, a library package that is to have broad application:

generic -- a useful addition that is later discovered in a library type P is private;
type D is (<>);
type A_O is array(D, D) of P; -- OK, absolutely unique
- type A_1 is array(D, POSITIVE range <>) of P; -- can not mix
- type A_2 is array(POSITIVE range <>, D) of P; -- can not mix type A_3 is array(INTEGER range
<>, INTEGER range <>) of P; -- too general
type A_4 is array(D, NATURAL) of P; -- still wrong constraint
type A_S is array(INTEGER, D) of P; -- will not take encompassing type
package X is
end X;

3-198
Supplement I

Ada 9X Revision Request 0713

The user tries to augment the application with an instantiation:
with X;

with ARRAYS; use ARRAYS;

procedure Y is -- bound to get many constraint errors

package XX is new X(P => P,
D => D,
A0 =>A0,
A3 =>A3, - must be specifically POSITIVE
A4 => A4, -- must be new subtype of NATURAL
AS =>A5);- want constrained universal integer
begin
null;
end Y; -- this compiles and goes into execution, then CONSTRAINT_ERROR !

There is a possible unification that needs to be considered.
IMPORTANCE: IMPORTANT

As more Ada applications are "completed” there is an increasing need to add features without rewriting the
applications. The number of useful library packages is growing. The general concept of reuse is being
implemented. Thus, there must be a broadening of the utility of generic units.

CURRENT WORKAROUNDS:

Either the application is modified or the library package is modified. There is minimal practical ability to
write generic packages that can placed in a library and used by existing applications.

POSSIBLE SOLUTIONS:

Just one incomplete idea.

1) An array index position may be constrained (given lower and upper bounds) or may be
unconstrained (given <>). When an object of an array type is declared, the constrained index
positions must not be given bounds and the unconstrained positions must be given bounds.

2) If a type mark is used where the syntax of a range is needed, the range is
type_mark’FIRST..type_mark’LAST

3) A generic actual parameter must be a subtype of the generic actual parameter. The generic actual
parameters constraints are used throughout the generic unit.

4) A generic formal index position that is unconstrained will match a generic actual index position,
using the generic actual index position constraints as subscript constraints for that position. Such
an index position must be given bounds when an object is declared in the generic unit. The attribute
index_type_mark’POSITION_RANGE is available to specify the widest possible bounds.

3-199
Supplement 1

Ada 9X Revision Requests 0163

VARIABLE-LENGTH STRING
DATE: August 11, 1989
NAME: Larry Langdon

ADDRESS: Census Bureau
Room 1377-3
Federal Office Bldg 3
Washington, DC 20233

TELEPHONE: (301) 763-4650
E-mail(temporary): langdonl@ajpo.sei.cmu.edu

ANSI/MIL-STD-1815A REFERENCE: 363
PROBLEM:

Strings are inadequate in Ada. It is very frequently the case that the length of a string is not known until
it is formed...after it has been declared. This leads to ugly, clumsy constructions (blank pad everything, keep
track of length separately, play tricks with DECLARE’s and constant strings, etc.). The obvious solution
of writing a variable-length string package (see LRM, section 7.6) is unsatisfactory: you are lead to a
limited private type because neither the standard equality test nor assignment are appropriate. (you want
the both to ignore everything beyond the actual length of the strings) For limited private types, however,
you have no assignment statement at all. We implemented such a package and found that using a
procedure (SET) for assignment was error-prone and hard-to-read. This even for experienced programmers
and even after getting beyond the initial learning curve for the package.

IMPORTANCE: IMPORTANT

As mentioned above, we have found that the present alternatives beget error-prone and less readable code.

CURRENT WORKAROUNDS:

a) Declare your string to be the maximum length needed and pad it at all times with blanks, NUL’s,
or whatever. This only works when you have some character known to be insignificant at the tail
of the string. It can be very inefficient when there is a wide range of actual string lengths.

b) Declare your string to be the maximum length needed and have a separate integer variable to keep
the actual length of the string. This causes extra coding which represents additional error

possibilities and reduces readability.

) Use a package such as that in section 7.6. As mentioned above, the lack of an assignment
statement interferes with both reliability and readability.

POSSIBLE SOLUTIONS:

a) Define a variable string type within the language.

3-200
Supplement I

...,

Ada 9X Revision Requests

0163

7.6 to be properly constructed.

3-201
Supplement I

b) Allow overloading of assignment (:=), thereby permitting a package such as that in LRM section

Ada 9X Revision Requests 0257

RESTRICTING "STRING" TO CHARACTER

DATE: May 21, 1989
NAME: J. A. Edwards
ADDRESS: General Dynamics

P.O. Box 748 MZ 1746

Fort Worth, Texas 76101
TELEPHONE: (817) 763-2612
ANSI/MIL-STD-1815A REFERENCE: 363
PROBLEM:
It seems overly restrictive to only allow CHARACTER as string elements and not allow BOOLEAN or
BYTE strings. Typically, interface data can be generated and received as strings of known length. The
structure of the language easily supports an extension by providing for BOOLEAN or BYTE to follow the
"of" in the object declaration.
IMPORTANCE: IMPORTANT
Embedded systems seldom have the same character representation or interface needs for strings.
CURRENT WORKAROUNDS:
Treat as arrays and hope that the packing can be specified in rep specs.
POSSIBLE SOLUTIONS:

Allow other constructs/objects.

3.202
Supplement I

Fﬁi

Ada 9X Revision Request 0327

VARYING STRINGS

DATE: September 13, 1989
NAME: Seymour Jerome Metz
DISCLAIMER:

The views expressed in this request are those of the author, and do not necessarily reflect those of Logicon.

ADDRESS: Home: 4963 Oriskany Drive
Annandale, Virginia 22003

Office: Logicon, Inc.
2100 Washington Boulevard
Arlington, Virginia 22204-5704

TELEPHONE: Home: (703) 256-4764
Office: (703) 486-3500 Extension 2295

ANSI/MIL-STD-1815A REFERENCE: 363
PROBLEM:

Ada has no mechanisms for defining and manipulating varying strings.

IMPORTANCE: IMPORTANT
Without this capability, Ada will be avoided for applications for which character handling is important.

Where use of Ada is mandated, reliability will suffer. Solutions involving vendor-supplied packages will not
be transferrable across implementations, and will cause a skills-transfer problem.

CURRENT WORKAROUNDS:

Use unconstrained strings. This can be extremely expensive, and in any event has the wrong semantics.
Define varying_string as a type of package. However, limitations on the overloading of assignment and
equality operations make this unacceptable. Further, this makes it awkward to treat fixed and varying
strings symmetrically.

POSSIBLE SOLUTIONS:

Change 3.3.2(2) to read

subtype_indication ::= [VARYING] type_mark [constraint]

with a paragraph specifying that varying can only be used for an array type.

Add 10 5.2.1(1)

3-203
Supplement I

Ada 9X Revision Request ' 0327

If the array variable is a varying array, then the size of the expression becomes the current size of
the array variable; the exception CONSTRAINT_ERROR s raised if this exceeds the declared size
of the array variable.

Add to 11.1(5)

the current length of a varying array,

In addition, there should be attributes, functions and procedures to append, truncate and determine
maximum length. '

Alternatively, the above capability could be limited to strings.

3-204
Supplement 1

Ada 9X Revision Request 0381

RECORD TYPE
DATE: October 10, 1989
NAME: William Thomas Wolfe

ADDRESS: Department of Computer Science
Clemson University
Clemson, SC 29634 USA

TELEPHONE: (803) 656-2847
E-mail : wtwolfe@hubcap.clemson.edu

ANSI/MIL-STD-1815A REFERENCE: 3.7
PROBLEM:

The record type, which is a composition mechanism, does not automatically compose all operations which
are available to each and every component into an identically-named operation over the resulting record

type.
IMPORTANCE:
CONSEQUENCES:

Operations such as "=" and Assign, as well as any other operations which might reasonably be expected to
compose automatically, must be composed manually, leading to a loss of programmer productivity.

CURRENT WORKAROUNDS:
As described in CONSEQUENCES.
POSSIBLE SOLUTIONS:

Introduce a new pragma ADT (type); which can be used on a limited private type defined within a package
specification; this indicates that the type and the associated operations within the package specification
constitute a user-defined data type, and would instruct the compiler to automatically compose operations
which are available on each and every component of a given record type into equivalent operations over
that record type.

Alternatively, perhaps there could be some means of specifying that only specific operations over a
user-defined data type are composable (e.g., pragma Composable); the point is that there needs to be
some mechanism by which general composition can be done automatically. Making only specific
operations composable (such as assignment and equality) rather than arbitrary operations should NOT be
considered a reasonable solution to the problem.

3.205
Supplement I

Ada 9X Revision Request 0443

PROBLEMS REGARDING ANONYMOUS ARRAY TYPES
DATE: October 11, 1989
NAME: J G P Barnes (endorsed by Ada (UK)

ADDRESS: Alsys Lud
Newtown Road
Henley-on-Thames
Oxon, RG9 1EN UK

TELEPHONE: +44-491-579090
ANSI/MIL-STD-1815A REFERENCE: 3.7

PROBLEM:

It is generally very irritating not being able to use anonymous arrays in records. Extra type names have to
be introduced which are only used once; this causes clutter, obscures the situation and may introduce a
false sense of abstraction. Thus instead of neatly writing

type STACK(MAX: NATURAL) is
record
S: array (1 ..MAX) of INTEGER;
TOP: INTEGER,
end record;

we have to laboriously write
type INTEGER_VECTOR is array (INTEGER range< >) of INTEGER;
type STACK(MAX: NATURAL) is
record
S: INTEGER_VECTOR(1 ..MAX);
TOP: INTEGER;
end record;
where the intermediate type INTEGER_VECTOR may well not be used elsewhere at all
Note that anonymous array types were allowed in 1980 Ada and so this irritation did not then arise.
As a further and more severe example consider the problem of creating two dimensional array structures;
there is a choice between declaring a genuine two dimensional array or alternatively an array of arrays.
Each has its merits in different circumstances.
Thus we might have
type MATRIX is array (INTEGER range <>, INTEGER range <>) of REAL;

type VECTOR is array (INTEGER range <>) of REAL;

3-206
Supplement I

Ada 9X Revision Request 0443

To create an array of arrays, we need to give a name to the intermediate type. And moreover the
component subtype must be constrained so that the number of columns must be pinned down first. So

type MATRIX_3_6 is array (1..3) of VECTOR(1 .. 6);
We can now declare a two dimensional array or an array of arrays

TDA: MATRIX 1.3, 1 .. 6);
AOA: MATRIX_3_6;

We could of course have declared TDA without introducing a name for the type MATRIX at all. But on
the other hand we could not have avoided giving a name to the intermediate type in the case of AOA; the
most we could have done is write

ADA: array (1.. 3) of VECTOR(1 .. 6);

A curious anomaly now occurs in the case of discriminated records; We can declare

type RECTANGLE (ROWS, COLUMNS: POSITIVE) is
record
MAT: MATRIX(1 .. ROWS< 1 .. COLUMNS);
end record;

where the internal structure is a two dimensional array but we cannot create the analogous record where
the internal structure is an array of arrays. We want to say something like

type RECTANGLE (ROWS, COLUMNS: POSITIVE) is
record
MAT: array (1.ROWS)of VECTOR(1 .. COLUMNS);
end record;

but we cannot because an anonymous array type is not allowed in records. Moreover we cannot name the
type outside the record because the discriminant COLUMNS would not be visible.

Unlike the first example there is no workaround at all in this case.

The inability to choose the representation is annoying when one considers that we can declare the private
type with discriminants

type RECTANGLE (ROWS, COLUMNS: POSITIVE) is private;
and might then hope to provide either of the above formulations as the full type.
Again this problem did not arise in 1980 Ada.

IMPORTANCE: IMPORTANT

Not very important but it illustrates the sort of frustration that Ada causes because of its nonorthogonality.
The Ada type model brings surprises which may be symptomatic of a lack of consistency.

CURRENT WORKAROUNDS:

3.207
Supplement I

Ada 9X Revision Request 0443

As illustrated above.
POSSIBLE SOLUTIONS:

The language could revert to the situation in 1989 where a record component could be declared with an
array type definition. But there is clearly a need to investigate why it was changed in the first place.
There were a number of changes from 1980 that restricted the user in a similar manner (e.g., requiring type
mark rather than subtype indication in many situations); this one is the only one that is a real nuisance.

3.208
Supplement 1

MAda 9X Revision Request 0672

ANONYMOUS POINTER TYPES
DATE: August 3, 1989
NAME: Nicholas Baker

ADDRESS: McDonnell Douglas Electronic Systems Company
5301 Bolsa Avenue 28-1
Huntington Beach, California 92647

TELEPHONE: (714) 896-5060
ANSI/MIL-STD-1815A REFERENCE: 37
PROBLEM:

In constructing lists, trees, and other graphs, it is necessary to have a record containing a pointer to records
of the same type. This is an extremely common situation. The language requires that the record type be
declared before it is referenced in the access type definition, and then fully defined after the access type
definition:

type Egg;
type Chicken is access Egg;
type Egg is record
Yolk: chicken;
end record;

Not only are there three type declarations (syntactically) to define what is conceptually one type, but there
are two names to describe one thing. We will only speak of chickens in the body of the program. The eggs
are only needed in a few formalisms. We do, however, need to talk about eggs in creating a deallocator:

procedure Dispose is
new Unchecked_Deallocation (egg,chicken);

IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS:

See the problem section.
POSSIBLE SOLUTIONS:

Permit the subtype indicator in the component declaration of a record declaration (or maybe anywhere) to
be of the form "access<subtype indicator>".

type Chicken is record
Yolk: access chicken;
end record;

procedure Dispose is

3-209
Supplement I

MAda 9X Revision Request 0672

new unchecked_deallocation(chicken);

Of course, it can be argued that this violates principles of sound software engineering, since it creates an
anonymous type, but the formalities behind numeric types and array types produce multitudes of anonymous

types anyway.

There is also a problem with Dispose. If the argument to dispose is the pointer type, then it is an
anonymous type, and there might be more than one such anonymous type, which is a violation of type
uniqueness. If the argument is the type of the item denoted, then Dispose cannot have the side effect of
setting the pointer to null. I am of the opinion that this side effect is of little value.

3-210
Supplement I

»j

Ada 9X Revision Requests 0212
ASSIGNMENT TO A DISCRIMINANT .

DATE: June 15, 1989

NAME: Mike McNair

ADDRESS: Link Flight Simulation Division of CAE-Link Corporation
1077 E. Arques Avenue
Sunnyvale, CA 94088-3484
TELEPHONE: (408) 720-5871
ANSI/MIL-STD-1815A REFERENCE: 3.7.1(9)

PROBLEM:

For large discriminated records, a complete object assignment just to change the discriminant is frequently
very cumbersome. Many times the component values must be determined in a sequence of processing
thereby making it awkward to have all component values available at a given point in the execution.

IMPORTANCE: IMPORTANT

CURRENT WORKAROUNDS:

No workarounds exist. .
POSSIBLE SOLUTIONS:

Delete 3.7.1(9) in order to allow discriminant assignment to be on par with component assignment. Note
that 4.1.3(8) will still be in effect.

3-211
Supplement 1

Ada 9X Revision Request 0530

DIRECT ASSIGNMENT TO DISCRIMINANTS IS NOT ALLOWED
DATE: July 12, 1989
NAME: Stef Van Vlierberghe

ADDRESS: S.A. OFFIS N.V.

Wetenschapstr. 10 - Bus §

1040 Brussels

Belgium
TELEPHONE: +32 2 230.75.70
ANSI/MIL-STD-1815A REFERENCE: 3.7.1(9)

PROBLEM:

Direct Assignment to Discriminants is not allowed.
The problem with this rule is that on the one hand, it is not really necessary (it is a protection against

undefined values in a specific context), and on the other hand it is the only rule that prevents support for
mutants of limited types.

IMPORTANCE: ADMINISTRATIVE

Administrative as a single instance of the problem. The general approach of typing to half-protect against
undefined values in Important.

CURRENT WORKAROUNDS:
Don’t use limited mutants, put all components of the variant part at one level, verify consistency yourself.

POSSIBLE SOLUTIONS:

One should define components that depend on discriminants undefined immediately after assignment to the
discriminant, such that programs that try to fiddle variants are erroneous because of undefined value access.

High quality compilers should include a general (suppressible) verification for undefined values, or should

at least initialize the undefined dependent components to a known value in order to prevent programs to
try using mutants as type conversion machines.

3-212
Supplement I

Ada 9X Revision Request 0473

PARTIALLY CONSTRAINED DISCRIMINATED SUBTYPES
DATE: October 21, 1989
NAME: Gary Dismukes

ADDRESS: TeleSoft
5959 Cornerstone Court West
San Diego, CA 92121-9891

TELEPHONE: (619) 457-2700 x322
ANSI/MIL-STD-1815A REFERENCE: 3.7.2

PROBLEM:

Ada’s existing mechanism for constraining discriminated types is too restrictive. While range constraints
can be used to constrain scalar subtypes to a range of values, discriminant constraints can only be used to
fully constrain the values for a given subtype so that all values of the subtype have discriminants fixed to
a single value.

IMPORTANCE: IMPORTANT

The addition of a feature for expressing partially constrained discriminated subtypes would provide much
greater flexibility in the use of discriminated types and enable programmers to express logical restrictions
on values of a discriminated variable more effectively.
One important example of the use of such a mechanism would be in defining a convenient form of
variable-length string type, meeting a common need of many users. Following is an example of how such
a type might be defined and used:
Type VAR_STRING (LENGTH: NATURAL := 0) is
record
VALUE: STRING(1 .. LENGTH);
end record;
subtype TEXT_STRING(LENGTH => 1.. 80);
subtype COMMAND_STRING is TEXT_STRING(1 .. 10);
function VS (S: STRING) return VAR_STRING;
LINE : TEXT_STRING;
CS : COMMAND_STRING := VS§("list");
T1 := VS("This is a string of text");

T1:

CS; -- assignment of a short string to a long string

3-213
Supplement 1

Ada 9X Revision Request 0473

The advantage of this approach over the conventional approach of using a discriminant to express the
maximum size of a given object is the compatibility of objects with different subtypes (and hence possibly
different maximum sizes). This also can provide significant space savings by not requiring the definition
of a single maximum size subtype that must be used for objects of widely varying sizes.

Partially constrained subtypes would also be useful for expressing refinements for variant record types. For
example, a compiler might use a variant record for describing symbol table entries and include different
variants for different subclasses of symbols:

type SYMBOL_CLASS is
(NO_SYMBOL, VARIABLE_OBJECT, CONSTANT OBJECT,
INTEGER_TYPE, ARRAY_TYPE, RECORD_TYPE, PROCEDURE_UNIT,
FUNCTION_UNIT, TASK_UNIT, ...);

subtype OBJECT_CLASS is SYMBOL_CLASS
range VARIABLE _OBJECT .. CONSTANT_OBIJECT;

subtype TYPE_CLASS is SYMBOL_CLASS
range INTEGER_TYPE .. RECORD_TYPE;

subtype UNIT_CLASS is SYMBOL_CLASS
range PROCEDURE_UNIT .. TASK_UNIT;

type SYMBOL (CLASS : SYMBOL_CLASS := NO_SYMBOL) is

record
case CLASS is
when OBJECT_CLASS => ..
when TYPE_CLASS => ..
when UNIT_CLASS => ..
when others => ..,
end case;
end record;

subtype OBJECT_SYMBOL is SYMBOL(OBJECT_CLASS);
subtype UNIT_SYMBOL is SYMBOL(UNIT_CLASS);

Objects of subtype UNIT_SYMBOL would be assignable to objects of type SYMBOL, but not to objects
of type OBJECT_SYMBOL (the latter assignment would incur an exception).

CURRENT WORKAROUNDS:

Users are forced to use fully unconstrained objects that waste space and don’t express intended logical
refinements (and allow incorrect assignments to go unchecked) or else to use constrained objects that may
also waste space and restrict flexibility.

POSSIBLE SOLUTIONS:

Extend the syntax and semantics of discriminants constraints to permit partially constrained subtypes. This

3-214
Supplement I

Ada 9X Revision Request 0473

feature might only be permitted for types whose discriminants have defaults. The syntax could be something .
like the following:

discriminant_constraint ::=

(discriminant_association {, discriminant_association})
discriminant_association =

[discriminant_simple_name | {|discriminant_simple_name} =>
discriminant_refinement

discriminant_refinement ::=
expression | discrete_range

Compatibility of discriminant range refinements would be checked as part of the elaboration of discriminant
constraints and further refinements could be applied for existing partially constrained subtypes. Subtype
checking on assignment to an object with a partially constrained subtype would check compatibility of the
source value with the target subtype’s discriminant ranges.

The principal difficulty of integrating such a feature into Ada is to determine appropriate semantics for
compatibility of discriminated subtypes in parameter passing. While it should clearly be possible to
associate an object with a formal parameter of mode out (or in out) whose subtype is fully constrained or
fully unconstrained, it is less clear what should happen if the formal parameter’s subtype is partiaily
constrained. One approach would be to require exact compatibility of subtypes if the formal subtype is
partially constrained. Another issue arises when considering compatibility checks for assignments to out
parameters when the formal subtype is unconstrained. In order to perform compatibility checks properly ‘
when the actual parameter is partially constrained it is necessary for discriminant subtype bounds
information to be passed to the subprogram. This clearly requires an extension to current implementation
approaches for discriminated parameters, but is solvable without introducing undue distributed overhead
for programs not using this feature by careful integration with the existing support already required for the
CONSTRAINED attribute.

3.215
Supplement 1

Ada 9X Revision Request 0531

NESTED VARIANTS
DATE: June 7, 1989
NAME: Stef Van Vlierberghe

ADDRESS: S.A OFFIS N.V.
Wetenschapstr. 10 - Bus 5

Brussels

Belgium
TELEPHONE: +32 2 230.75.70
ANSI/MIL-STD-1815A REFERENCE: 3.7.2
PROBLEM:

Record types with variants work well as long as the variant subcomponents do not contain variants
themselves.

type T_KIND is (C_NUMERIC, C_STRING);
type T_NUMERIC is digits 6;

type T_EXPRESSION (KIND : T_KIND) is

record
REFERENCE_COUNT : INTEGER;
case KIND is
when C_NUMERIC=> NUMERIC_VALUE : T_ NUMERIC;
when C_STRING => STRING_VALUE : STRING;
end case;
end record;

Is all very nice and is much better than in Pascal or C. But what happens if we start moving towards a more
sophisticated implementation than the one given above?

type T NUMERIC_1_KIND is (C_INTEGER, C_REAL);
type T NUMERIC_1 (KIND : T_NUMERIC_1_KIND) is

record
case KIND is
when C_INTEGER => 1_VALUE : INTEGER;
when C_REAL => R_VALUE : LCNG_FLOAT;
end case;
end record;

type T_NUMERIC_2_KIND is (C_ZERO_ERROR, C_BOUNDED_ERRORY);

type T_ NUMERIC_2 (KIND : T_NUMERIC_2 KIND) is
record
VALUE : T_NUMERIC_1;
case KIND is

3.216
Supplement I

Ada 9X Revision Request 0531

when C_ZERO_ERROR => null;
when C_BOUNDED_ERROR => UPPER, LOWER : LONG_Fl OAT,;
end case;
end record;

type T_KIND is (C_NUMERIC, C_STRING);
type T_EXPRESSION (KIND : T_KIND) is

record
REFERENCE_COUNT : INTEGER;
case KIND is
when C_NUMERIC => NUMERIC_VALUE : T NUMERIC _2;
when C_STRING => STRING_VALUE : STRING;
end case;
end record;

A little higher level expression (support for a bounded error) and a little more efficient (integer operations
can be executed as such). Before considering the problems with this illegal Ada code, one should
understand that this is not exotic; one can go much further in this "classification” of a given type, in this
case one might add units of measurement and/or support for SHORT_ and LONG_ Ada predefined integer
and floating point types, support for fixed point types, support for (software emulated) "infinite range”
types, complex numbers etc..., and this just for a single type. In fact, this grouping of related types into a
single type, is the cornerstone of object oriented programming in the original meaning (not Booch but
Simula-67, SmallTalk-80, Eiffel, C++, Objective-C, ...), so it is worth looking at the problem.

The problem above is that record components need to be constrained if the type has discriminants without
default values, so there are three options : either we constrain the values, we add default values, or we
allocate each component dynamically.

The problem with dynamic memory allocation of each component is time efficiency : dynamic memory
management is not cheap in terms of CPU cost, garbage collection is even more expensive, accessing virtual
memory implies paging problems when huge amounts of data are manipulated, and finally the references
themselves cost memory. All factors increase at least linearly with the number of objects. Hence, in
general, using a dynamic object for each variant component means that each object of a class that is n deep
in a specialization tree with be composed of a n separately allocated objects.

The problem with adding default values is purely a memory efficiency problem : when adding default valu.s
and using unconstrained record components, one will obtain mutant components that take as much memory
as their largest variant, in the example above the 2-byte-integer zero-error numeric (which could be
represented byte plus the discriminants) will need 24 byies (3 * LONG_FLOAT) plus the discriminants,
which is about 6 times more.

The problem with constraining the components presents various problems for the programmer. Let’s use
this solution on the example presented above :

type T_ NUMERIC_1_KIND is (C_INTEGER, C_REAL);
type T_ NUMERIC_1 (KIND : T NUMERIC_1_KIND) is
record
case KIND IA
when C_INTEGER => 1_VALUE : INTEGER;
when C_REAL => R_VALUE : LONG_FLOAT,
end case;

3217
Supplement 1

Ada 9X Revision Request 0531

end record;

type T_NUMERIC_2_KIND is (C_ZERO_ERROR, C_BOUNDED_ERROR);
type T NUMERIC_2 (KIND_2 : T NUMERIC_2_KIND; KIND 1 :
T_NUMERIC_1_KIND) is

record
VALUE : T_NUMERIC_1 (KIND_1);
case KIND is
when C_ZERO_ERROR => null
when C BOUNDED_ERROR => UPPER, LOWER : LONG_FLOAT;
end case;
end record;

type T_KIND is (C_NUMERIC, C_STRING);

type T_EXPRESSION (KIND : T_KIND;
KIND_2 : T_NUMERIC_2_KIND;
KIND_1 : T NUMERIC_1_KIND) is

record
REFERENCE_COUNT : INTEGER;
case KIND is
when C_ NUMERIC => NUMERIC _VALUE : T_NUMERIC 2
(KIND_2, KIND_1);
when C_STRING => STRING VALUE : STRING;
end case;
end record;

One problem is the amount of discriminants that one gathers at the "root” type : there are as many
discriminants as there are non-leaves in the specialization tree.

A resulting problem is the meaningless” programing that one needs to initialize a value of the type
T_EXPRESSION, e.g.:

V : T_EXPRESSION (KIND => C_STRING,
KIND_1 => C REAL, -Meaningless but required
KIND_2 => BOUNDED_ERROR, -Meaning but required
REFERENCE_COUNT => 0,
STRING_VALUE => "not so nice");

At last, one has the problem of non-modularity. Information about implementations of the numeric
expressions should not influence string expressions. The solution presented implies such dependencies.

To summarize the problems involved : one wants efficient access to the components of an "object oriented”
type, one wants to represent such type by a single dynamic object, one wants to use unconstrained
subcomponent types while still being able to constrain them later.

IMPORTANT: IMPORTANT

CURRENT WORKAROUNDS:

Ignore the problems mentioned above...

3.218
Supplement 1

Ada 9X Revision Request 0531

POSSIBLE SOLUTIONS:

A "simple” solution might be to have a constraining new operation, which would allow us to constrain all
subcomponents of a type, even if they were not constrained in the type’s declaration:

allocator:= new subtype_indication 1 new [constrained] qualified_expression |
The advantages are clear:

The "dynamic" type of an object is fixed at creation time and cannot be modified subsequently (runtime
check on "CONSTRAINED same as Ada-83).

The dynamic object can be represented by the minimal required memory, as if each "dynamic” type would
have been a compile-time record type.

The creation operation can now be implemented in modular fashion : one could create an expression by
first giving a local mutant the value of the object to be created (an operation which can be distributed
over different packages), and subsequently use the mutant in the qualified expression.

Each variant component of the dynamic object could possibly be accessed by first reading the combined
value of all discriminants involved, indexing a component location table with this combined value, and
adding the result to the object’s address. A alternative implementation could use type descriptors. Anyway,
there is clearly no implementation or efficiency problem with this approach since a "good” compiler already
uses these techniques for records with consecutive subcomponents which constraints depend on the
discriminants.

There is no conflict with the current programs which could not have used the new feature, so the only
compatibility problem is the new reserved word. Either one accepts the fact that identifiers named
"constrained” need to be substituted (not a dramatically complex operation), or one takes an existing
keyword (constant, limited, is, ...)

The solution is compatible with Ada’s dynamic mutability approach (and in fact only possible due to this

approach), and forms a direct extension of the principle; according to the Alsys Rationale, one preferred

dynamic mutability to avoid different treatment of objects of mutable and immutable types (in the former

case an extra component, here an extra discriminant), and to avoid allocation of unnecessary memory (in

the former case because of unconstrained dynamic objects in the case of incompletely (shallow) constrained

dynamic objects). A typical argument used at that time was that discriminants of dynamic objects e
unlikely to change after allocation, an argument that equally holds here.

When one inspects the domain of object oriented programming a little further, one finds out that in any
event, the modularity problem is not solved completely by any modification of the variant records issue.
In particular, any object oriented "message” needs to be translated into a subprogram that selects the proper
implementation of a "redefineable” method by a case statement that transfers control to the proper subclass
package. Hence, adding method implementation redefinitions will, without further adaptation of the
language to object orientedness, always affect the class that specifies th= method. From that point of view,
the modularity issue is something that should be left to the domain of ASPE'’s and incremental compilers,
without affecting the language. Hence, only focusing on the possibility of porting object oriented software
to Ada, another alternative could only solve the discriminant flattening problem by introducing variant parts
in discriminant_parts. Using the approach, our example could look like :

type T_KIND is (C_NUMERIC, C_STRINGY);

3-219
Supplement I

Ada 9X Revision Request 0531

type T_EXPRESSION (KIND : T_KIND:
case KIND is
when C_STRING => null
when C_NUMERIC => KIND_2 : T NUMERIC_2_KIND;
KIND_1: T_ NUMERIC 1 KIND
end case;) is

record
REFERENCE_COUNT : INTEGER;
case KIND is
when C_NUMERIC => STRING_VALUE " T NUMERIC_2 (KIND_2,
KIND 1)
when C_STRING => STRING_VALUE : STRING;
end case;
end record;

E := new T_EXPRESSION(C_STRING);
E := new T_EXPRESSION(C_NUMERIC, KIND_1 =>C_REAL, KIND_2 => C_BOUNDED_ERROR);

This approach would introduce less new concepts, and is consistent with the approach taken for variants
in general : types remain entirely constrained or not constrained at all, and all components (this time
including discriminants) that depend on discriminant values exist if and only if the discriminants have the
value they depend on.

A slightly modified version of this solution is also possible : instead of imposing the specification of all
dependent discriminants that are used to constrain dependent subcomponents, one could define the as
existing, implicit discriminants.

One could introduce the concept of explicit and implicit discriminants : explicit discriminants are those
found in the type declarations, implicit discrimi: ants are discriminants of all subcomponents that were not
constrained and should constrained according to the Ada83 standard. When declaring an object of a type,
one should specify all explicit and implicit discriminants.

type T_KIND is (C_NUMERIC, C_STRING);
type t_EXPRESSION (KIND : T _KIND) is

record
REFERENCE_COUNT : INTEGER;
case KIND is
when C_NUMERIC => NUMERIC_VALUE : T_ NUMERIC_2;
--Not allowed in Ada83
when C_STRING => STRING_VALUE : STRING;
end case;
end record;

:= new T_EXPRESSION(C_STRING;
:= new T_EXPRESSION(C_ NUMERIC, KIND_1 =>C_REAL,KIND_2 =>C_BOUNDED_ERROR});
--- Required values for implicit discriminants

At the declaration this comes to exactly the same result, the only difference is that one does not explicitly
repeat the existence of these nested discriminants : easier to write and maintain, more difficult to read. This
lat drawback is probably a decisive to prefer the solution mentioned earlier.

3.220
Supplement I

Ada 9X Revision Request 0531

Possibly even better solutions can be found, but unless clear drawbacks of the suggested solution can be
demonstrated, no solution will always be worse than a naive and/or inelegant solution.

A last indication that the variant records issue is not entirely "clean is the fact that I couldn't find any
literature that seriously deals with this topic. Only the Rationaly mentions that problem of variant record,
but, with all due respect for the already elaborate discussion found there it does not consider the problem
of nested variants at all.

3-221
Supplement 1

Ada 9X Revision Request 0336

ALLOW ARRAY TYPE DEFINITIONS WITHIN RECORDS
DATE

April 24, 1989
NAME: Bjorn Kallberg

ADDRESS: Ericsson Radar Electronics
S-164 84 Stockholm
Sweden

TELEPHONE: +46 8 757 35 08

+46 8 752 81 72
E-mail: ada_ubk@kierre.ericsson.se

ANSI/MIL-STD-1815A REFERENCE: 3.7 (2)
PROBLEM:

With the current record type definition, it is impossible to define a general type with variable size in two
or more dimensions. This was legal in the 1980 definition. It was probably inadvertently removed, in a
general attempt to decrease the use of anonymous array types.

One of the greatest advantages of Ada is the possibility to build composite, general, parametrized types.
Presently, this facility is limited to one dimension. The building of higher levels of abstraction, using
simpler types, is often impossible.

Example: You want to define a page of text, naturally consisting of a number of lines. For lines you
want to use the line definition from a package such as the Text_handler package in LRM
7.6. However,

type Page_t(lines_on_page, Chars_on_line : integer) is record
Lines : array(l..Lines_on_page) of
Text_handler.text(Maximum_length => Chars_on_line);

end record;
is illegal.
IMPORTANCE: ESSENTIAL
CURRENT WORKAROUNDS:

Hard code the size of the lines. Hardly portable or elegant.
Use access types. Gives different semantics and makes garbage collection necessary.

Default on discriminant. Compiler either allocates maximum size of record, thus inefficient use of memory,
or allocation on heap, with same problem as above.

POSSIBLE SOLUTIONS:

3.222
Supplement I

Ada 9X Revision Request

0336

Return to the 1980 definition of record type, i.e., add the last line in the definition below.

component_ declaration ::=
identifier_list : component_subtype_definition [:=expression]
! identifier_list : array_type_definition [:=expression]

3-223
Supplement I

Ada 9X Revision Request 0568

‘ MULTIPLE NON-NESTED VARIANT PARTS FOR RECORD TYPES
DATE: October 21, 1989
NAME: Stephen Baird
ADDRESS: Rational
3320 Scott Blvd.
Santa Clara, CA 95054-3197
TELEPHONE: (408) 496-3600
ANSI/MIL-STD-1815A REFERENCE: 3.7(2)
PROBLEM:

A discriminated record type should be allowed to have multiple non-nested variant parts. For example, the
following should be legal:

type Foo_Kind is (A,B,C,D);
type Foo (Kind : Foo_Kind) is

record
case kind is
when A | B =>
F1 : Integer;
‘ when others =>
null;
end case;
case kind is
when A | C =>
F2 : Float;
when others =>
null;
end case;
case kind is
when B | C =>
F3 : Duration;
when others =>
null;
end case;
end record;

This would be much more readable and convenient (and probably more efficient) than the alternative that
is currently available:

type Foo_Kind is (A,B,C,D);
‘ type Variant_Part_1 (Kind : Foo_Kind) is

3-224
Supplement I

Ada 9X Revision Request 0568
record
case kind is .
when A | B => ..
F1 : Integer;
when others =>
null;
end case;
end record;

type Variant_Part_2 (Kind : Foo_Kind) is

record
case kind is
when A | C =>
F2 : Float;
when others =>
null;
end case;
end record;

type Variant_Part_3 (Kind : Foo_Kind) is

record
case kind is
when B | C =>
F3 : Duration;
when others =>
null;
end case;
end record;

type Foo (Kind : Foo_Kind) is

record
Vp_1 : Variant_Part_1 (Kind => Kind);
Vp_2 : Variant_Part_2 (Kind => Kind);
Vp_3 : Variant_Part_3 (Kind => Kind);
end record;

This sort of problem can arise fairly often in practice, whenever one defines a data structure that is built
up of different kinds of nodes along with various attributes, each of which is defined only on nodes of a
particular set of node_kinds.

IMPORTANCE: IMPORTANT

CURRENT WORKAROUNDS:

Introduce intermediate discriminated types and use propagated discriminant constraints, as in the previous
example.

POSSIBLE SOLUTIONS:

3.225
Supplement I

Ada 9X Revision Request 0596

ENDING RECORD DECLARATIONS WITH TYPE NAME ITSELF

DATE: October 19, 1989
NAME: James Lee Showalter, Technical Consultant
DISCLAIMER:

This Revision Request has been submitted to some amount of peer review by others at Rational, but it is
not an official Rational submission.

ADDRESS: Rational

3320 Scott Blvd.
Santa Clara, CA 95054-3197

TELEPHONE: (408) 496-3606 [11am-Spm]
ANSI/MIL-STD-1815A REFERENCE: 3.7(2)
PROBLEM:

Some record declarations can get quite long, and it is hard to remember at the end what the record was
called at the start.

IMPORTANCE: IMPORTANT
This revision improves readability of the code.
CURRENT WORKAROUNDS:

Some programmers comment the bottom of long record declarations with the name of the record, as
follows:

type Foo is
record

end recc;;d; --Foo
POSSIBLE SOLUTIONS:

It should be possible to end record declarations with the name of the record, instead of with the reserved
word RECORD:

type Foo is
record

end Foo;

3.226
Supplement I

Ada 9X Revision Request 0596

This should be optional, with the reserved word RECORD still be acceptable.
COMPATIBILITY:

The proposed solution is upward-compatible. All previously-compiled code will re-compile successfully and
will behave identically during execution except for possible small changes in execution speed.

3-227
Supplement 1

Ada 9X Revision Request 0532

‘ THE IDENTIFIERS OF ALL COMPONENTS OF A RECORD TYPE MUST BE DISTINCT
DATE: July 12, 1989
NAME: Stef Van Vlierberghe

ADDRESS: S.A. OFFIS N.V.
Wetenschapstr. 10 - Bus 5
1040 Brussels
Belgium

TELEPHONE: +32 2 230.75.70
ANSI/MIL-STD-1815A REFERENCE: 3.7(3)
PROBLEM:

The identifiers of all components of a record type must be distinct. This restriction is a very tricky one,
it is probably accepted because it was considered indispensable for type checking reasons. But what happens
in practical situations as a result of this rule? If the rule would be replaced by a rule that focusses on type
checking only, one could write a (perfectly unambiguous) program like :

procedure TEST is
type T_KIND is (A,B,C);
. type T(KIND : T_KIND :=A) is
record

U : INTEGER;

case KIND is
when A => XY : INTEGER;
when B => X, Z : INTEGER;
when C => X,Z : INTEGER;

end case;
end record;

V:T,
function TWICE_X (V : T) return INTEGER s
begin

return V.X * 2;
end;
procedure SET_X (V : in out T; VALUE : INTEGER) is
begin

V.X := VALUE;
end,

Remark that this example conforms to the Ada design because the type of V.X is statically known.
IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS:

3-228
Supplement I

Ada 9X Revision Request 0532

Shown above. With the rule 3.70(3), the program shown above is illegal. The workaround is simple, ‘
mechanical and cumbersome : one needs to combine the name of the discriminant value and the component
and use a case for each access:
procedure TEST is
type T_KIND is (A,B,C);
type T (KIND : T_KIND := A) is

record
U : INTEGER;
case KIND is
when A => A_XA_Y : INTEGER;
when B => B_X,B_Z : INTEGER;
when C => C_Y,C_Z : INTEGER;
end case;
end record;
V:T;
function TWICE_X (V : T) return INTEGER is
begin
case V.KIND is
when A => return VA X * 2;
when B => return V.B_ X * 2;
when C => raise CONSTRAINT_ERROR;
end case;
end;
procedure SET_X (V : in out T; VALUE : INTEGER) is
begin
case V.KIND is .
when A => V.A X := VALUE;
when B => V.B_X := VALUE;
when C => raise CONSTRAINT_ERROR;
end case;
end;

=

I believe that the example illustrates that such kind of problems should really be dealt with by a machine
and not by a programmer.

POSSIBLE SOLUTIONS:

Remove rule 03.07(03) and replace it with a milder rule:

Each identifier used in the identifier_list of 2 component_declaration should be associated with
a single type within a single record_type_definition.

The identifiers used in a component_list should be all distinct, and should not be used in
subsequent variant_parts.

This rule assures that any selection that selects a component with an identifier that has been used more
than one in a record declaration has a type that is statically known, and denotes at most one subcomponent
of the prefix.

3-229
Supplement I

Ada 9X Revision Request 0707

NON-DISTINCT RECORD COMPONENT IDENTIFIERS

.o

DATE October 23, 1989

NAME: David Calloway, Randaii Rushe

ADDRESS: SAIC (Science Applications International Corporation
5517 Hickory St.
Panama City, FL 32404

TELEPHONE: (904) 784-1799
ANSI/MIL-STD-1815A REFERENCE: 3.7(3)
PROBLEM:

The current ANSI/MIL-STD-1815A requires all record component identifiers to be distinct, even when one
identifier would logically apply to more than one, but not all variants in the record. The proposed change
would relax this restriction by permitting non-distinct component identifiers to appear in more than one
variant in the declaration of the type, as long as any elaboration of the record would not result in multiple
components with the same identifier.

An example of this would be the following declaration of a coordinate system record which would not be
a valid record type declaration under the current standard, but wouid be permitted if the proposed change
were approved:

type Coordinate_System_Type is (Spherical, Cylindrical, Cartesian);

type Coordinate_Record (Coordinate_System : Coordinate_System_Type) is

record
case Coordinate_System is
when Cartesian => X: Float;
Y: Float;
Z: Float;
when Spherical => R: Float;
Theta : Float;
Phi: Float;
when Cylindrical => R: Float;
Theta : Float;
Z: Float;
end case;
end record;
IMPORTANCE: IMPORTANT

This problem arises with some regularity, and the existing restriction thwarts efforts to have meaningful and
intuitive identifiers. One of the best features of the Ada language is its capability to reflect the
characteristics of the problem for which a program is written. The proposed change will enhance Ada’s

3-230
Supplement I

Ada 9X Revision Request 0707

strong self-documenting and strong-typing features.
CURRENT WORKAROUNDS:

There are two current workarounds to the problem:

1. Change one or more of the identifiers to maintain uniqueness. This fully adheres to the
current standard, but results in the non-intuitive use of different identifiers to represent
logically similar components, or the use of identifiers which do not map closely to the
problem space.

Example:
type Coordinate_Record (Coordinate_System : Coordinate_System_Type) is
record
case Coordinate_system is
when Cartesian => X : Float;
Y : Float;
Z : Float;
when Spherical => R : Float;
Theta : Float;
Phi : Float;
when Cylindrical => R_Cyl: Float;
Theta_Cyl : Float;
Z_Cyl: Float;
end case;
end record;
2. Do not use vari.1t parts. Instead, specify components which will satisfy all cases. This

requires that storage for all components be allocated for an object whether applicabie or
not and, again, results in a data structure that does not map directly o the problem space.
This makes the resulting code more difficult to understand and requires users of the record
to specify values for identifiers that do nct apply to the specific instance of the record they
have elaborated.

Example:
type Coordinate_Record is
record
X : Floag;
Y : Float;
Z : Float;
R : Float;
Theta : Float;
Phi : Float;
end record,
3. Use a combination of variant and non-variant parts, placing identifiers which occur in only

one variant in the variant part and identifiers which would logically appear in more than

3-231
Supplement I

Ada 9X Revision Request 0707

one variant in the non-variant part. The disadvantage with this solution is that it again
does not map elegantly to the problem space, makes the resulting code more difficult to
understand, and prevents the compiler from detecting invalid combinations that could be
specified in this format.

Example:

type Coordinate_Record (Coordinate_System : Coordinate_System_Type) is record

Z : Float; -- Should only be used in Cartesian and
-- Cylindrical coordinate systems.

R : Float; -- Should only be used in Spherical and
-- Cylindrical coordinate systems.

Theta . Float; -- Should only be used in Spherical and
-- Cylindrical coordinate systems.

case Coordinate_System is

when Cartesian => X : Float;
Y : Float;

when Spherical => Phi : Float;
when Cylindrical => null;
end case;
end record;

POSSIBLE SOLUTIONS:

Preferred Solution:

Revise the standard to permit non-distinct component identifiers, so long as any elaboration of the record
does not result in multiple components with the same identifier. A change in wording of the standard
might be:

"The identifiers of all components of a record type must be distinct {for any elaboration of the
record type definition].” (LRM 3.7)

An additional reasonable restriction is that there be no potential for an elaboration to result in non-
distinct identifiers. This permits full compile-time checking. Sample wording might be:

"The identifiers of all components of a record type must be distinct [for any POSSIBLE elaboration
of the record type definition]." (LRM 3.7)

and
"[Non-distinct component identifiers may not appear in the same variant of a variant part and may

not appear outside a variant part. Nor may the same component identifier appear both inside and
outside a variant part.]" (LRM 3.7.3)

3-232
Supplement I

Ada 9X Revision Request 0707

"[Non-distance component identifiers may only appear in different variants of a variant part.]"

A further restriction that all components having the same identifier must aiso have the same type would
be acceptable in most cases, but is probably not necessary for implementation.

Examples:

An example of a proposed legal record type definition is the one presented in the problem statement.
Another would be:

type DISCRIMINANT_TYPE is (SET_A, SET_B, UNION_A_B);
type GOOD_RECORD (DISCRIMINANT : DISCRIMINANT TYPE) is

record
case DISCRIMINANT is
when SET_A => COMPONENT_A : COMPONENT_TYPE;
when SET_B => COMPONENT B : COMPONENT_TYPE;
when UNION_ A B => COMPONENT A : COMPONENT_TYPE;
COMPONENT _ B: COMPONENT_TYPE;
end case;
end record;

The following would be an illegal record type definition (even though a record elaborated with
SET_A would not have non-distinct components).

type BAD_RECORD (DISCRIMINANT : DISCRIMINANT_TYPE) is

record
COMPONENT_B : COMPONENT _TYPE;
case DISCRIMINANT is
when SET_A => COMPONENT_A : COMPONENT _TYPE;
when others => COMPONENT B : COMPONENT_TYPE;
end case
end record;

Alternative solution:

If muitiple variant parts were permitted there would be several possible ways of declaring the problematic
record structures, without requiring non-distinct identifiers. However, these are less straightforward than
for the preferred solution, and may require a more complex implementation. For example:

type GOOD_RECORD _2 (DISCRIMINANT : DISCRIMINANT_TYPE) is

record
case DISCRIMINANT is
when SET A | UNION_ A B => COMPONENT_A
COMPONENT_TYPE;
when SET_B => null;
end case;

case DISCRIMINANT is
when SET_A => null;
when SET B | UNION_AB => COMPONENT_B

3-233
Supplement I

Ada 9X Revision Request 0707

COMPONENT_TYPE;
end case;
end record;

Impact:

The proposed solutions would be upward compatible with all existing Ada application code, and should have
minimal impact on compiler implementations.

3-234
Supplement I

Ada 9X Revision Requests 0258

USE OF ACCESS VARIABLES TO REFERENCE OBJECTS
DECLARED BY OBJECT DECLARATIONS

DATE: June 9,1989
NAME: Barry L. Mowday

ADDRESS: General Dynamics
P.O. Box 748 MZ 5050
Fort Worth, Texas 76101

TELEPHONE: (817) 762-3325
ANSI/MIL-STD-1815A REFERENCE: 338
PROBLEM:

In the Notes for section 3.8 is the statement 'An access value can only designate an object created by an
allocator; in particular, it cannot designate an object declared by an object declaration.” This statement,
while reflecting the intentions of the designers of the language, has proven to be inconsistent with the usage
of the language. In order to set up linked lists in which all elements are static and to point to the next
object in the list, one can either use access objects or objects of type ADDRESS. Use of ADDRESS has
been objected to on grounds of lack of type-checking. After initialization, the access object is used generally
in accordance with the intent of the language designers.

IMPORTANCE: IMPORTANT

The semantics of the allocator and ADDRESS capabilities provided by the language pose unnecessary
obstacles to applications requiring the use of static objects in linked lists. At the same time, these obstacles
decrease the amount of compile time checking that can be done.

CURRENT WORKAROUNDS:

Use unchecked conversion between ADDRESS and access types to initialize access objects to reference
declared objects. However, there is not required checking that the address of the source operand to the
unchecked conversion function actually references an object of the target access type.

POSSIBLE SOLUTIONS:

)] Delete the statement in the Notes section referenced above. It is misleading at best, and is more
accurately viewed as being inaccurate.

) Allow explicit conversion between objects of type ADDRESS and access objects as long as the
target of the access type is the same as the object whose ADDRESS is being converted.

See MOWDAY-002 for a related submittal.

3-235
Supplement 1

Ada 9X Revision Request 0493

KNOWING IF GARBAGE COLLECTION IS BEING PERFORMED

DATE: October 24, 1989

NAME: Mats Weber

ADDRESS: Swiss Federal Institute of Technology
EPFL DI LITh
1015 Lausanne
Switzerland

TELEPHONE: +41 21 693 42 43

E-mail: madmats@elcit.epfl.ch
ANSI/MIL-STD-1815A REFERENCE: 338
PROBLEM:

Ada 83 allows too much freedom in the memory allocation/ deallocation mechanisms. This affects the
portability of programs that use access types.

IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS:

Avoid access types and task types.
POSSIBLE SOLUTIONS:

The language standard should provide an attribute that allows an application to know if it performs garbage
collection on a given collection, or if Unchecked_Deallocation must be used. When garbage collection is
not performed, Unchecked_Deallocation sh¢-uld be required to do something more than just setting its
parameter to null; that is, to actually deallocate the storage occupied by the designated object. It must be
recognized, however, that this would be hard to check in a validation suite, but it is very important in the
case of long-running programs. The language standard should also specify that constructs other than
allocators are not allowed to generate memory leaks.

3-236
Supplement I

Ada 9X Revision Request 0643

GARBAGE COLLECTION IN ADA
DATE: October 28, 1989
NAME: Henry G. Baker

ADDRESS: Nimble Computer Corporation
16231 Meadow Ridge Way
Encino, CA 91436

TELEPHONE: (818) 501-4956
(818) 986-1360 FAX

ANSI/MIL-STD-1815A REFERENCE: 33, 4.8, 13.2, 13.10.1

SUMMARY:

The general solution to the allocation of storage for accessed variables in Ada is garbage collection. Garbage
collection is able to accurately determine which portions of storage are still accessible to the program and
which are not, so that the inaccessible portions can be returned for reuse by the running program. Because
garbage collection is "underneath" the program, it is capable of examining the entire state of the program,
and can therefore manipulate these "inaccessible” objects.

During the first decade of Ada’s existence, Ada implementors and Ada programmers were encouraged to
stay away from garbage collection because of the "horror stories” that they had been told. Garbage
collection is “inefficient", can cause a "real-time" program to go temporarily "catatonic”, and involves a
commitment to a larger run-time system.

We suggest that the time has come to reconsider this recommendation, and to suggest that Ada 9X
encourage implementors and programmers to use garbage collection, including for mission-critical real-
time systems.

SPECIFIC REQUIREMENTS/SOLUTION CRITERIA:

The Ada language provides for very flexible data structures to be built using access types. The storage
required for these structures is acquired from the Ada run-time system by the "new" construct, which
allocates the space. The space is then occupied until Ada can prove that no harm would come from reusing
the storage for something else. Typically this proof comes in the form of a proof that the storage is no
longer accessible, the contents of the storage can have no further bearing on the course of the computation.

(There may be a case where an active task becomes inaccessible itself, but which is still capable of changing
the values of data visible to others. In this case, the storage should not be reclaimed. This issue is address
in [Baker77].)

Proofs of inaccessibility are typically done by a garbage collector. Two standard techniques are in use --
the reference count technique and the mark-sweep technique. The reference count technique keeps count
within each object of the number of external references to the object. When this count becomes zero, the
object is inaccessible [Deutsch]. However, if there are directed loops within a structure, the reference count
will not go to zero, and these loops cannot be easily reclaimed (however, see[Bobrow]). The mark-sweep
method traces out all possible access paths, marking all accessible nodes as it goes. Those nodes left

3.237
Supplement I

Ada 9X Revision Request 0643

unmarked at the end of the marking process are by definition inaccessible. [Cohen] is a good survey of
garbage collection strategies.

Both the reference count and the mark-sweep techniques have been made into "incremental” and "real-
time" methods. The reference count technique is already quite incremental in its nature, and its behavior
can be adjusted to tailor the amount of work performed on an allocation so that it is proportional to the
amount of space requested [Baker78). (Making reference count truly incremental requires deferring the
disassembly of returned objects until their storage is needed.) The mark-sweep technique can also be made
incremental [Baker78], although requiring a slight increase in complexity, but its behavior is similar in that
its work on allocation is proportional to the amount of space requested.

What is less well known, is that tight bounds can be placed ¢n the amount of time required to allocate a
block of size n in an incremental mark-sweep method, where the time bound is of the form Cn, for some
(surprisingly small) constant C [Baker78]. A system can be built using this technique that satisfies hard
real-time requirements, assuming that there is an upper bound on the sizes of the objects being requested.
Furthermore, these time bounds are the best that can be achieved, in the sense that any sufficiently general
storage allocation mechanism must take time proportional to the size of the storage being allocated to
perform its task. (Even if the allocation of storage could be done faster, most systems could not take
advantage of this, because the initialization of that storage requires time proportional to the storage
allocated.)

Most of the storage allocation techniques utilized by operating systems or Ada run-time systems cannot
claim "real-time" behavior. Any Ada run-time system that does not relocate objects (nearly all of them)
must deal with storage fragmentation. Fragmented storage implies a fragmented free-list, and free-lists must
be searched to find a portion of storage which can accommodate a request. For example, DEC Ada utilizes
a "find-first-fit" search for its Ada [DEC]. A search through a fragmented free storage list takes a certain
amount of time, and this time in most systems does not have an upper bound, but is statistically reasonably
small.

An Ada run-time system that does not relocate objects (nearly 100% of the Ada implementations) cannot
use storage efficiently, and in the worst case can use storage extremely inefficiently. For example, [Robson]
shows that an allocation of a block of size <n can fail even when memory is only about 1/(1+.5log n) full;
if n=64, allocation can fail when memory is only 25% occupied, and if n=1024, allocation can fail when
memory is only 16.7% full. Robson’s result is a combinatorial result about the block sizes themselves, and
has nothing to do with a garbage collection algorithm; it therefore applies to all Ada systems. In any
particular system, a storage allocation system can fail at even small occupancy levels; Robson’s result says
that no matter how good the allocation/deallocation system is, one can force it to fail at the above-
mentioned occupancy levels by a suitably chosen sequence of allocation and deallocation requests. In other
words, storage can become very badly fragmented, implying relatively long free-list searches.

An Ada run-time system which does relocate must update all of the pointers to updated objects, and finding
these pointers may be tantamount to implementing a general mark-sweep garbage collection algorithm.

Note that a reference count system-- in addition to having problems with directed cycles--does not usually
relocate objects, so that it must contend with all of the storage fragmentation problems talked about above,
which in turn implies not-very-real-time allocation behavior.

The net result of these observations is that while there are contenders for an Ada garbage collection system,
there is only one contender that offers the possibility of hard real-time behavior--the incremental relocating
mark-sweep approach [Baker78).

3-238
Supplement 1

Ada 9X Revision Request 0643

For non-embedded Ada systems such as programming environments, the "generational garbage coliectors”
have become the state-of-the-art [Lieberman, Unger, Moon, Courts]. They offer superior average
performance, as well as superior locality of reference in a paging environment, and therefore are attractive
for non-real-time and non-real-memory environments. They can also be efficiently implemented using the
stock memory mapping hardware of modern computers [Appel, Shaw]. However, these approaches still
cannot offer hard real-time capabilities unless their operation is also incremental in nature. However,
commercial systems incorporating garbage collection have reached acceptable real-time performance for
systems environments; the Symbolics Lisp Machines operate continuously as file servers, even when they are
continuously collecting garbage [Moon].

The net result of the past 10 years of research and implementation experience in garbage collectors is thus:

* Garbage collection is compatible with the requirements of hard real time systems.

* Garbage collection is an accepted implementation technique for several popular languages.

* Generational garbage collection is statistically very efficient, and many commercial systems use it
daily.

* Garbage collection is no longer the specter that it appeared when Ada was standardized.

CURRENT WORKAROUNDS:

Workarounds have been discussed at great length in the literature. Most workarounds eventually cost as
much effort as simply biting the bullet and offering garbage collection.

NON-SUPPORT IMPACT:
Less productive systems designers who must constantly scratch their heads to figure out how to avoid
garbage collection. More buggy systems that opt for "unchecked deallocation”. Heavier maintenance costs

when someone must find the one place in a 10,000,000+ line program where someone screwed up and
deallocated the wrong thing.

POSSIBLE SOLUTIONS:

Discussed above.
DIFFICULTIES TO BE CONSIDERED:

Distributed systems are an interesting problem, but garbage collection in those environments has been
studied [Halstead].

REFERENCES:

Appel, Andrew W, Ellis, John R., and Li, Kai. "Real-time concurrent garbage collection on stock
multiprocessors”. ACM Prog. Lang. Des. and Impl, June 1988, p.11-20.

Baker, Henry G., Jr. "The Incremental Garbage coilection of Processes”. ACM Symp. on Al and Prog.
Langs., also SIGPLAN Notices 12, 8 (Aug 1977), pp.55-59.

3-239
Supplement I

Ada 9X Revision Request 0643

Baker, Henry G., Jr. "List processing in Real Time on a Serial Computer". CACM 21, 4 (April 1978),
pp-280-294.

Bobrow, Daniel G. "Managing reentrant structures using reference counts”. ACM TOPLASS 2,3 (July 1980),
pp-269-273.

Cohen, Jacques. "Garbage collection on linked data structures”. Computing Surveys I3, 3 (Sept. 1981),
pp-341-367.

Courts, Robert. "Improving Locality of Reference in a Garbage-Collecting memory Management System".
CACM 31, 9 (Sept. 1988), pp. 1128-1138.

DEC. VAX Ada and VAXELN Ada Technical Summary. Digital Equipment Corporation order number:
AA-GS98A-TE, October, 1985.

Deutsch, L. Peter, and Bobrow, Daniel G. "An efficient, incremental garbage collector”. CACM 19, 9
(Sept.1976), pp.522-526.

Halstead, R. "Implementation of Multilisp: Lisp on a multiprocessor”. ACM Symp. on Lisp and Func. Prog,,
Austin, TX, Aug. 1984, pp.9-17.

Liebermann, Henry and Hewitt, Carl. "A real-time garbage collector based on the lifetimes of objects”.
CACM 26.6 (June 1983), pp.419-429.

Moon, David. "Garbage collection in a Large Lisp system". ACM SIGPLAN Symp. on Lisp and Func.
Prog., 1984, pp.235-246.

Robson, J.M. "Bounds for Some functions Concerning Dynamic Storage Allocation”. JACM 21,3 (July
1974), pp.491-499.

Shaw, Robert A. "Improving garbage collector performance in Virtual Memory". Stanford University
computer Systems Lab. CSL-TR-87-323, March 1987.

Ungar, David. "Generation scavenging: A non-disruptive, high performance storage reclamation algorithm".
ACM Sigsoft/Sigplan Symp. on Prac. Soft. Devel. Envs., 1984, pp. 157-167.

3-240
Supplement 1

Ada 9X Revision Request 0702

HEAP MANAGEMENT IMPROVEMENTS

DATE: October 9, 1989

NAME: John Pittman

ADDRESS: Chrysler Technologies Airborne Systems
MS 2640
P.O. Box 830767

Richardson, TX 75083-0767
TELEPHONE: (214) 907-6600
ANSI/MIL-STD-1815A REFERENCE: 338, 4.8 (7..12), 7.4, 13.10.1
PROBLEM:

Many current compilers do not provide automatic heap reclamation. This shortcoming encourages the use
of UNCHECKED_DEALLOCATION and/or discourages the use of access types. The language does not
support all of the constructs needed to perform the necessary checks.

IMPORTANCE: ESSENTIAL

In the embedded systems domain, correct reclamation of the heap is absolutely necessary.
CURRENT WORKAROUNDS:

Extensive testing is used whenever UNCHECKED_DEALLOCATION is present.
POSSIBLE SOLUTIONS:

Allow specification of procedures that are to be called when an object ceases to be visible. Such procedures
must accept a single parameter of the appropriate type with in out mode and perform the needed
operations. Note that this is also a method of implementing automatic file closing.

Allow a higher degree of detail in pragmas instructing the compiler on heap management. For instance,
a simply linked list member object could be managed automatically by the compiler via access count
recording.

3-241
Supplement 1

Ada 9X Revision Requests 0259

INCOMPLETE TYPE DECLARATIONS
DATE: June 9, 1989
NAME: J. A. Edwards

ADDRESS: General Dynamics
P.O. Box 748 MZ 1746
Fort Worth, Texas 76101

TELEPHONE: (817) 763-2612

ANSI/MIL-STD-1815A REFERENCE: 3381

PROBLEM:

Incomplete type declaration can cause maintenance problems when the user expects an existing unit to be
mature and a candidate for reuse. The reused program should be updatable with good confidence of not
inserting errors. However; currently, the compilation system does not have to provide warnings when an
unreferenced incomplete type declaration is in error. Instead of allowing incompletely defined declarations,
the language could merely allow forward references in the declaration syntax/ semantics. Such an approach
would cut out the verbosity of an Ada program, remove opportunities to leave incomplete declarations in
a program that aren’t flagged by the compilation system, etc. Most compilation systems are multipass and
can resolve forward references within the same compilation unit.

IMPORTANCE: IMPORTANT
To ensure highly reliable units for further reuse.

CURRENT WORKAROUNDS:

Try to restrain programmers from leaving incomplete type declarations that are not used through the project
programming standards. Such capability should not be allowed within language constructs without
appropriate error management. It should be avoided in producing programs that must attain high levels
of reliability, e.g., embedded processors. New tools may be needed that duplicate much of the parser for
recognizing such declaration fragments.

POSSIBLE SOLUTIONS:

1. Rewrite the syntax/semantics to support forward references.

2. Provide for compilation information messages when incompletely specified items remain in the code
that are not used.

3-242
Supplement 1

Ada 9X Revision Requests 0238

ACCESS VALUES THAT DESIGNATE CONSTANT OBJECTS

DATE August 10, 1989

L)

NAME: Donald R. Clarson

ADDRESS: Teledyne Brown Engineering
151 Industrial Way East
Eatontown, NJ 07724

TELEPHONE: (201) 389-6756
ANSI/MIL-STD-1815A REFERENCE: 3.8.1
PROBLEM:

All objects designated by access values are treated as variables.

Access types provide both dynamic allocation (and storage management) of objects during program execution
and a means to create data structures with components which refer to other data structures.

Application programs may require access values which designate constant objects so that data structures may
be created which refer to these constant values and to allow these access values to be passed as parameters.
It may be necessary to preallocate these constant objects and store the collection in a Read-Only-Memory
device in order to minimize the time required for elaboration of library packages before system operation
begins.

The Ada program will continue to treat these objects as variables and will allow subsequent assignment to

these designated objects. Since the Read-Only-Memory device will not store the value assigned, erroneous
conclusions couid be drawn from an analysis of the program execution.

IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS:

None. Some environments allow named constants to be stored in ROM with access values created by
UNCHECKED_CONVERSION to type SYSTEM.ADDRESS. These access values may then be used in the
construction of data structures which refer to these constant values. Ada will treat the designated object
as a variable and will not enforce the constant nature of these objects.

POSSIBLE SOLUTIONS:

Add a construct to the language which w.il allow an access type which may only designate constant objects.
A possible syntax for these access type definitions is:

type Identifier is access [constant] Subtype_indication;
The semantics require that every allocator for this type must provide a qualified expression for the value

of the designated object. The language would preclude any subsequent assignment to an object designated

3-243
Supplement I

Ada 9X Revision Requests 0238

by an access value of this type.

A representation clause which provides the required address in storage for a collection would facilitate the
preallocation of these objects in a Read-Only-Memory device. The following paragraph (to follow ARM
13.5(6)) would allow this:

@) Name of an access type: The address that is required for the collection needed to contain all objects
designated by the access type.

3-244
Supplement 1

Ada 9X Revision Request 0533

INCOMPLETE TYPES CAN’T BE USED ACROSS PACKAGES
DATE: June 27, 1989
NAME: Stef Van Vlierberge

ADDRESS: S.A OFFIS N.V.
Wetenschaptr. 10 - Bus 5
1040 Brussels
Belgium

TELEPHONE: +32 2 230.75.70
ANSI/MIL-STD-1815A REFERENCE: 3.8.1
PROBLEM:

This is one of the most fundamental problems with Ada’s modularity support. In short one can say that
it is impossible to implement full and efficient support for a binary 1-to-N or N-to-M between types T1 and
T2 unless you either imply that T1 and T2 are declared in one declarative region or that one fiddles the
language (using type SYSTEM_ADDRESS). The most amazing aspect of this problem is the number of
Ada experts who ignore the problem, or propose solutions that just can’t work.

A more detailed description is presented by following example:

package PERSONS_HAVE_CARS is
type T_PERSON is limited private;
type T_CAR is limited private;

-- Support for Persons
procedure CREATE_PERSON (P : in out T_PERSON; NAME...);
function NAME (P_PERSON...

-- Support for Cars
procedure CREATE_CAR (C : in out T_CAR; COLOR...);
procedure COLOR (C_CAR...

-- Support for the 1 to many relationship between PERSONS and CARS

procedure TRANSFER_CAR_TO_PERSON (C: T_CAR; P : T_PERSON);
--Makes P the new owner of C

function HAS_ OWNER (C:T_CAR) return BOOLEAN;
procedure GET_OWNER (C:T_CAR; P: in out T_PERSON);

generic

with procedure FOR_EACH (C: T_CAR);
procedure FOR_ALL_CARS_OF (P:T_PERSON);
-- Performs FOR_EACH for each car of P.

3.245
Supplement I

ADA 9X REVISION REQUESTS
THAT REFERENCE
ANSI/MIL-STD-1815A

SECTION 4. NAMES AND EXPRESSIONS

41
Supplement I

Ada 9X Revision Requests 0262

CREATING STUBS
DATE: June 9, 1989
NAME: J. A. Edwards

ADDRESS: General Dynamics
P.O. Box 748 MZ 1746
Fort Worth, Texas 76101

TELEPHONE: (817) 763-2612
ANSI/MIL-STD-1815A REFERENCE: 39 #9
PROBLEM:

In realtime or large scale developments with strict configuration management (CM) requirements, the
process of creating an artificial stub interferes with the development process. It seems unnecessary to have
to create a stub with all the capability of the language for separate compilation coupled with the
specifications. Stubs are part of some development processes, but seldom useful in weapon systems
developments. For every update to a program library unit, proper CM rules must be followed. Therefore,
enlarging a stub takes more effort than to create it, install it, and revise it in the program library.

IMPORTANCE: IMPORTANT

The linker can provide dummy calls and returns so that stub does not have to be created and early
development and integration can begin.

CURRENT WORKAROUNDS:

Avoid the stub generation or provide additional overhead in the configuration management for updating
a stub to a full unit.

POSSIBLE SOLUTIONS:

Allow the compiler to have a parameter for compilation to "assume” a stub for the specification without
the user having to create the extra body with only a NULL statement inside.

3-268
Supplement I

Ada 9X Revision Request

For additional references to Section 3. of ANSI/MIL-STD-1815A, see the following revision request

numbers, and revision request titles and pages in this document.

NUMBER
0012
0093
0096
0101
0172
0242
0311
0367
0438

0505

0556
0558

0559

0616

0704

REVISION REQUEST

TITLE

MUTATION OF TYPES
CONSTANTS REFERRED TO PACKAGE BODY
LIMITATIONS ON USE OF RENAMING

IMPLEMENTATION OF EXCEPTIONS AS TYPES

IMPORTS TYPE DECLARATIONS FROM ELSEWHERE

ERROR CLASSIFICATION

DECOUPLE ADA FROM CHARACTER SET
NATIONAL LANGUAGE CHARACTER SETS
HANDLING OF LARGE CHARACTER SET IN ADA
RECORDS AS GENERIC PARAMETERS,

OBJECT ORIENTED PROGRAMMING, TYPE
INHERITANCE, REUSABILITY

USE OF PARENTHESES FOR MULTIPLE PURPOSES
MAKING DERIVED SUBPROGRAMS UNAVAILABLE

READING OF OUT PARAMETERS THAT ARE OF
ACCESS TYPES

COMPILE-TIME DETECTION OF
CONSTRAINT ERRORS

GENERIC FORMAL EXCEPTIONS

3-269
Supplement 1

PAGE

9-19

11-5
8-50

1-22

2-11

2-12

12-50
2-18

7-24

6-57

1-24

12-19

Ada 9X Revision Request 0308

ARRAY PROCESSING
DATE: September 13, 1989
NAME: Seymour Jerome Metz
DISCLAIMER:
The views expressed in this request are those of the author, and do not necessarily reflect those of Logicon.

ADDRESS: Home: 4963 Oriskany Drive
Annandale, Virginia 22003

Office: Logicon, Inc.
2100 Washington Boulevard
Arlington, Virginia 22204-5704

TELEPHONE: Home: (703) 256-4764
Office: (703) 486-3500 Extension 2295

ANSI/MIL-STD-1815A REFERENCE: 4
PROBLEM:

Ada has no facilities for array processing required in numerical computing, circuit design, etc.
IMPORTANCE: IMPORTANT

Without appropriate features in the language, there will be a tendency to write such applications in
languages with better array handling, e.g., APL, PL/I or vector FORTRAN.

CURRENT WORKAROUNDS:

Packages using loops. This makes it difficult for the compiler to optimize code, and requires a large
number of explicit conversions in the code of the client procedure.

POSSIBLE SOLUTIONS:

Provide functions and operators for the more important array operations, €.g., inner product, outer product,
relations (elemcnt by element, not just lexicographic), reductions and selection. APL is a good model here,
except that the total number of operators should be kept more manageable.

The facilities added should be generalized, as in APL, e.g., "inner product” includes an "or reduction” of the
"and” of two boolean matrices.

4-26
Supplement 1

Ada 9X Revision Request 0755

SYNTAX FOR INDEXED COMPONENTS o

DATE October 31, 1989

NAME: Joe Cross

ADDRESS: Unisys Computer Systems Division
MS U2F13
PO Box 64525
St. Paul MN 55164-0525

TELEPHONE:

ANSI/MIL-STD-1815A REFERENCE: 41
PROBLEM:

SUMMARY:

Readability of programs would be improved by permitting an implementation to accept square brackets as
replacements for parentheses in indexing and slicing operations.

IMPORTANCE:

SPECIFIC REQUIREMENT/SOLUTION CRITERIA: .
Understanding an Ada program requires the reader to distinguish array indexing and slicing operation from

function calls and type conversions. This can currently require the reader to understand a large amount

of non-local context.

CURRENT WORKAROUNDS:
JUSTIFICATION/EXAMPLES/WORKAROUNDS:
The expression

A(B)
could represent an indexed array, a slice, a function call, or type conversion.
NON-SUPPORT IMPACT:
Initial understanding of Ada programs is harder than it has to be.

POSSIBLE SOLUTIONS:

Permit Ada implementation to accept brackets as alternative to parentheses in array indexing and slicing
operations.

DIFFICULTIES TO BE CONSIDERED: NONE

4.27
Supplement 1

Ada 9X Revision Request 0755

' REFERENCES/SUPPORTING MATERIAL: NONE

4-28
Supplement I

Ada 9X Revision Request 0323

THE SYNTAX FOR SLICES IS TOO RESTRICTED
DATE: August 31, 1989
NAME: Seymour Jerome Metz

DISCLAIMER: -

The views expressed in this request are those of the author, and do not necessarily reflect those of Logicon.

ADDRESS: Home: 4963 Oriskany Drive
Annandale, Virginia 22003

Office: Logicon, Inc.
2100 Washington Boulevard
Arlington, Virginia 22204-5704

TELEPHONE: Home: (703) 256-4764
Office: (703) 486-3500 Extension 2295

ANSI/MIL-STD-1815A REFERENCE: 4.1.2(3)
PROBLEM:

Slices are allowed only for single-dimensional arrays. Note that other languages allow non-contiguous slicing
on multiple indices concurrently, either for the entire range, e.g., PL/I, or for a specified subrange, e.g.,
ALGOL 68. The ability to do this in Ada would be important, but, at a minimum, slicing on the last index
is essential.

IMPORTANCE: ESSENTIAL

Regularity is compromised without this, and the design goals of Steelman and of 1.3(3) are violated:
Concern for the human programmer was also stressed during the design. ... underlying concepts integrated

in a consistent and systematic way. ... language constructs that correspond. intuitively to what the users will
normally expect.

CURRENT WORKAROUNDS:
Arrays of arrays can be used, but Ada does not allow array types with unconstrained components. Record
types can be used, but this can cause other problems, due to the restrictions on the use of discriminants.
In practice, this restriction usually forces the use of a for ... loop block, leading to less efficient code that
is harder to read and to maintain.
POSSIBLE SOLUTIONS:
1. Change 4.1.2(2) to read

slice ::= prefix({expression,}discrete_range)

4-29
Supplement I

Ada 9X Revision Request 0323

Change 4.1.2(3) to read

The prefix of a slice must be appropriate for an array with the specified number of
subscripts....

2, Change 4.1.2(1) to read

A slice denotes a subarray of an array, indexed by a cartesian product of sequences of
indices for one or more subscripts....

Chaxige 4.1.2(2) to read
slice ==

prefix(discrete_range | expression {,discrete_range|
expression})

change 4.1.3(7) to read

The selector must be a simple name denoting a component or slice of a record object or value. The prefix
must be appropriate for an object of this type.

Note that solution 1 is essentially free; solution 2, although more useful, would require considerable more
work in order to identify ramifications and consistently update the LRM, as well as requiring more of the
implementation.

4-30
Supplement I

Ada 9X Revision Request 0494

SLICES OF MULTIDIMENSIONAL ARRAYS

DATE: October 23, 1989

NAME: Mats Weber

ADDRESS: Swiss Federal Institute of Technology
EPFL DI LITh
1015 Lausanne
Switzerland

TELEPHONE: +41 21 693 42 43
E-mail : madmats@elcit.epfl.ch

ANSI/MIL-STD-1815A REFERENCE: 4.1.2

PROBLEM:

Slices are available only for one-dimensional arrays. For uniformity and efficiency reasons (especially for
vector processors), it would be very useful to have a similar facility for arrays with more than one

dimension.

IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS:

Use ’for’ loops for copying subarrays, which reduces readability, and a good optimizing compiler is required
for detecting such loops and replacing them with other machine instructions.

POSSIBLE SOLUTIONS:
Allow slices of multidimensional arrays.
This change would make the following possible:

type Index_1 is range ..;
type Index_2 is range ...;

type Matrix is array (Index_1 range <>, Index_2 range <>) of Float;
M : Matrix(1..6, 1..4);

procedure Invert (M : in out Matrix);

Invert(M(1..3, 1..3)); -- invert a submatrix of M

4.31
Supplement 1

Ada 9X Revision Request 0494

One problem with this change is that parameters of array types will not always occupy contiguous portions
of memory and as a consequence, attributes such as 'Size and 'Address will not make sense anymore.

4.32
Supplement I

Ada 9X Revision Request 0508

SUBARRAY SELECTION OF MULTI-DIMENSIONAL ARRAYS
DATE: October 27, 1989
NAME: Jan Kok (on behalf of the Ada-Europe Numerics Working Group)

ADDRESS: Centrum voor Wiskunde en Informatica
P.O. Box 4079, 1009 AB Amsterdam-NL

TELEPHONE: +31 20 5924107
+31 20 5924199 (fax)

ANSI/MIL-STD-1815A REFERENCE: 4.1.2
PROBLEM:

Current Ada allow the slicing of one-dimensional arrays (i.e. selecting as an object a subvector whose index
range is a subrange of the index range of the parent array object), but not of higher dimensional arrays.
This is a non-uniformity in the language. It also impacts heavily on the efficiency of many numerical
algorithms. Most numerical algorithms which process two-dimensional arrays involve repeated operations
on single rows or columns, or (for more modern algorithms aimed at vector and parallel architectures) on
square or rectangular submatrices.

The slicing facility (for one-dimensional arrays) can be used for partly copying the contents of an array, like

by:
A(2.5)=B(4.7)

but also for parameter passing where the formal parameter type is an unconstrained array type, like in:
SUM(X(L.U))

An alternative for obtaining a reference to a subarray is a renaming declaration:
Y : ARRAY _TYPE renames X (L .. U);

In the latter two cases an object with narrower index constraints is obtained (or passed on as a parameter)

from the original object without explicitly making a copy, as is intended, since updates with Y should be

carried out in X (L .. U) effectively.

The abilities we require now for multi-dimensional arrays are:

A) to obtain objects of the same dimension with narrowed index constraints, like by:
M(L1.U1,L2.02) ,
(where M is an object or parameter of a two-dimensional array type)
B) to obtain objects of lower dimension, like extracting a row or column (or a slice of these)
of a two-dimensional array object, e.g. to be used as an actual parameter of a call of a
subprogram that expects a parameter of a one-dimensional array type. Indicating a row of
a two-dimensional array might be provided through:
M(I,L2.02)

which selects the submatrix M (I .. I, L2 .. U2) of case A), but now as an object or
parameter of a one-dimensional array type (it provides the I-th row of the matrix M, to be
used as a vector).

With these abilities, submatrices can then be treated as single objects; and the operations needed can be
coded efficiently, e.g., in assembler if needed. At present, this is not possible in Ada, making the expression
of many algorithms much less elegant AND much less efficient. Providing this "subarray selection” might
cause additional overhead for its users, but the same users may gain efficiency by simpler subscripting.

4.33
Supplement 1

Ada 9X Revision Request 0508

IMPORTANCE: IMPORTANT

This requirement, though not stated to be essential in the sense of the word 'ESSENTIAL’ as defined in
the format, is actually ESSENTIAL for all implementors of Numerically Intensive Computing (NIC)
methods. Together with other Ada features like the possibility to declare operators for vector/matrix
arithmetic, the facility will be massively used, whereas at present these implementors are essentially
prohibited of using the highly useful BLAS (Basis Linear Algebra Subroutines) in Ada.

CURRENT WORKAROUNDS:

By explicit procedures for copying indicated parts of muiti- dimensional arrays. This copying is of course
wasteful of both time and space. Depending of the number of dimensions, if completeness is aimed at, then
both the number of subprograms for all cases of subarray selection and the number of parameters will
increase rapidly.

POSSIBLE SOLUTIONS:

By allowing a discrete range for each index of an indexed component, with suitable properties for the type
of the resulting object.

4-34
Supplement 1

Ada 9X Revision Request 0640

ACCESSING CHUNKS OF BIT-VECTORS AND BIT-ARRAYS

DATE

LX)

October 28, 1989
NAME: Henry G. Baker

ADDRESS: Nimble Computer Corporation
16231 Meadow Ridge Way
Encino, CA 91436

TELEPHONE: (818) 501-4956
(818) 986-1360 FAX

ANSI/MIL-STD-1815A REFERENCE: 4.1.2, 432, 45.1, 13.10.2
SUMMARY:

Bit vectors are an enormously useful and efficient data structure for solving many problems. Ada already
provides for the efficient implementation of and, or, xor, and not as bit-parallel operations on bit-vectors.
However, other operations also need to be performed efficiently, and Ada provides no mechanism to
implement this performance in a portable manner. An example is the "find-first-bit" function, for which
there are either hardware instructions, or at least far better software algorithms, than the obvious bit-after-
bit loop. There are needs to be a mechanism to acquire "chunks" of bit-vectors and operate on these
chunks.

SPECIFIC REQUIREMENTS/SOLUTION CRITERIA:

Bit-vectors used as unordered sets are supported by Ada, but other uses of bit-vectors are not. For example,
a hardware priority encoder looks at a set of n input lines and returns the index of the highest priority line
which is active. For many reasons, one may wish to implement this functionality in software instead of
hardware, but keep it reasonably fast. However, Ada does not portably support any mechanisms for doing
this. The only truly portable technique for solving this "priority encoder” or "find-first-bit" problem is to
loop through the bits one by one looking for the highest priority one that is on.

Yet embedded systems programmers have efficiently dealt with this problem in the past by examining chunks
of a bit-vector which are larger than one bit. Only when a non-zero chunk is located is any frrther
processing required, and even then a single table lookup will suffice. This technique is impossible to
program in portable Ada.

One possible mechanism for solving this problem would be an operation that operated on a bit-vector (as
a whole) and converted it into an integer. Using this operation in conjunction with Ada’s current ability
to select a subsequence from a bit-vector would allow the extraction of any particular chunk. If compilers
recognized this combination of selection and conversion, and if the programmer worked with certain
particularly efficient classes of subsequences, then these operations could be efficiently open-coded as byte
or word accesses to the underlying bits of the bit-vector.

The nature of the bit-vector-to-integer conversion then becomes the issue. In order to assure portability,
the ordering of the bits in a bit-vector relative to the ordering of the bits in an integer then becomes visible.
(LRM 13.4 para.5 states that the ordering of the bits within a storage unit is machine-dependent.)
Remember, however, tha the alternative, is to go completely outside of Ada or use some form of unchecked

4.35
Supplement I

Ada 9X Revision Request 0640

conversion, which would be worse.

We suggest that Ada provide a particular definition of bit-vector-to-integer conversion--namely, the most
obvious one, that of interpreting the bits as bits in a binary integer, where bv(i-bv’FIRST) becomes the
coefficient of 2**i in the integer. The integer produced in this manner has type universal_integer and
obvious optimizations exist to avoid multiple-precision arithmetic.

CURRENT WORKAROUNDS:

The only efficient workarounds involve bit-diddling behind Ada’s back, which is presumably not very portable
or maintainable.

There is nothing in Steelman which would lead one to believe that an explicit conversion between bit-
vectors and integers would cause immediate damnation to hacker hell. In fact, one could (liberally) interpret
requirement 8F to actually require such a conversion capability.

NON-SUPPORT IMPACT: Continued bit-twiddling.

POSSIBLE SOLUTIONS: Given above.

DIFFICULTIES TO BE CONSIDERED:

Som: existing implementations may store bit-vectors with bits in a different order than the bits in an
integer. This may require translation, but even reversing the bits in a byte or word is not that difficult--
it can be done in one ore more table-lookups. The best situation would be if the bit-ordering were the
same.

REFERENCES:

Baker, Henry G. "Efficient Implementation of Bit-vector Operations in Common Lisp." Internal
Memorandum, Nimble Computer Corporation, October 1989.

4-36
Supplement 1

Ada 9X Revision Request 0624

SELECTIVE USE CLAUSES

DATE: October 19, 1989
NAME: James Lee Showalter, Technical Consultant
DISCLAIMER:

This Revision Request has been submitted to some amount of peer review by others at Rational, but it is
not an official Rational submission.

ADDRESS: Rational
3320 Scott Blvd.
Santa Clara, CA 95054-3197

TELEPHONE: (408) 496-3706 [11am-9pm]
ANSI/MIL-STD-1815A REFERENCE: 4.1.3(14-15), 8.4(2)
PROBLEM:

Currently, USE clauses are an all-or-nothing construct; often a programmer wants direct visibility to some
subset of the contents of a package spec (often just the operators such as "=" and "*") without polluting
the name space with the entire contents of the package spec: USE clauses are too big a mallet to provide
this degree of selectivity.

IMPORTANCE: ESSENTIAL

Workarounds for this are clumsy.

CURRENT WORKAROUNDS:

Renaming provides some relief from this probiem; for example, one common use of renaming is to write
a "renaming package" that renames the operators from some other package: the idea is that the renaming
package is WITHed and USEd, giving direct visibility to the operators without giving direct visibility to
anything else. Unfortunately, this is clumsy, requires two packages where one should be suf7icient, and only
works when programmers are diligent and very knowledgeable.

POSSIBLE SOLUTIONS:
Extend the syntax of the USE clause to support selective using (similar to Modula-2):
* To use a selected component of a package:

with Some_Package;
use Some_Package.Some_Entity;

* To use all of the operators from a package:

4.37
Supplement I

Ada 9X Revision Request 0624

with Some_Package;
use Some_Package’Operators;

* To use all of the operators for a particular type from a package:

with Some_Package;
use Some_Package.Some_Type'Operators;

The above would be additive, so that each successive USE would have the effect of adding direct visibility
to anything to which direct visibility has not already been granted by a previous USE clause.

COMPATIBILITY:

The proposed solution is quasi-compatible. All previously-compiled code will re-compile successfully unless
it contains an implementation-defined’OPERATORS attribute for packages (this is not, however, all that
likely).

4-38
Supplement I

Ada 9X Revision Request 0570

e

s

ALLOW PREFIX OF A NAME TO DENOTE ‘
A RENAME OF AN ENCLOSING CONSTRUCT

DATE: October 21, 1989
NAME: Stephen Baird

ADDRESS: Rational
3320 Scott Bivd.
Santa Clara, CA 95054-3197

TELEPHONE: (408) 496-3600
ANSI/MIL-STD-1815A REFERENCE: 4.1.3(18)
PROBLEM:

Section 4.1.3(18) states that "A name declared by a renaming declaration is not allowed as the prefix". This
restriction should be removed. The restriction doesn’t introduce any major difficulties, but it does get in
the way once in a while and it appears to serve no useful purpose other than to help in disambiguating
pathological cases such as

type R is

record
X ! Integer; .

end record;

function F return R is

function G return R renames F;

X : Integer;

begin
return R’ (X => F.X + G.X);
--F.X. refers to the local variable X;
--G.X. refers to the X component of the result of a
--recursive call.

end F;

If the restriction were removed, then presumably 4.1.3(19) would apply to this example and the selected
component G.X would then refer to the local variable X.

IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS:
POSSIBLE SOLUTIONS:

4.39
Supplement I

Ada 9X Revision Request 0509

USER-DEFINED ATTRIBUTES
DATE: October 27, 1989
NAME: Jan Kok (on behalf of the Ada-Europe Numerics Working Group)

ADDRESS: Centrum voor Wiskunde en Informatica
P.O. Box 4079, 1009 AB Amsterdam-NL

TELEPHONE: +31 20 5924107
+31 20 5924199 (fax)
E-mail: UUCP: jankok@cwi.nl

ANSI/MIL-STD-1815A REFERENCE: 414, 742
PROBLEM:

It is currently impossible to design software (abstract data) types which, for example, mimic the semantic
properties of pre-defined types because of the impossibility of making language attributes applicable to new,
private types designed to have similar properties to pre-defined types.

This means that reusable software which is designed to be portable for different precisions and ranges of
arithmetic types (real or integer) must use function calls instead of attributes. Hence, functions must also
be defined (and used) for the pre-defined types with a possible loss of efficiency.

Example:

A generic package, based on a generic parameter that is a floating-point type (type REAL is digits <>;
), can be implemented with a package body in which the pre-defined arithmetic operations ("+", "*", etc.)
can be used, but also the attributes that characterize the floating-point model and the machine
representation.

Although a user can design a (software) floating-point type with its inherent arithmetic operations and

satisfying a floating-point model in the same way as the pre-defined floating-point type(s), such a type
cannot be used as the actual generic parameter of the above described generic package.

IMPORTANCE: IMPORTANT

Attributes encourage portability, this is lost if attributes cannot be used by reusable software. This problem
will be further exacerbated if additional attributes are defined at 9X to provide additional functionality (for
example "MIN(A,B) '"MAX(A,B)).

CURRENT WORKAROUNDS:

Attribute-yielding expressions are replaced by function calls.

POSSIBLE SOLUTIONS:

Introduce the declaration of attributes, and allow such attributes to be (explicitly) imported as generic

4-40
Supplement I

Ada 9X Revision Request

parameters.

4-41
Supplement I

Ada 9X Revision Request 0406

ATTRIBUTES CANNOT BE DEFINED WITH RESPECT TO A USER-DEFINED TYPE
DATE: October 14, 1989
NAME: William Thomas Wolfe

ADDRESS: Department of Computer Science
Clemson University
Clemson, SC 29634 USA

TELEPHONE: (803) 656-2847
E-mail : wtwolfe@hubcap.clemson.edu

ANSI/MIL-STD-1815A REFERENCE: 4.14 (4)
PROBLEM:

Attributes can be defined by the Ada language and by an implementation, but cannot be defined with
respect to a user-defined type.

IMPORTANCE:

CONSEQUENCES:

Inconsistency between predefined types and user-defined types.

Although it is possible to define procedures and functions over
user-defined types, it is not possible to invoke them using the

attribute notation. This creates syntactic inconsistency; code

must be written one way if an attribute for a predefined type is being used, and a different way if a
"synthetic” attribute for a user-defined type is being used.

CURRENT WORKAROUNDS:
Use "synthetic" attributes, as described above.
POSSIBLE SOLUTIONS:
Permit the expression of attributes for user-defined types such that operations can be invoked using the

object-oriented attribute syntax, whereby the object itself is an implicitly
supplied parameter to the invoked operation.

4-42
Supplement I

Ada 9X Revision Request 0613

USER-DEFINED ATTRIBUTES ‘
DATE: October 19, 1989
NAME: James Lee Showalter, Technical Consultant
DISCLAIMER:

This Revision Request has been submitted to some amount of peer review by others at Rational, but it is
not an official Rational submission.

ADDRESS: Rational
3320 Scott Bivd.
Santa Clara, CA 95054-3197

TELEPHONE: (408) 496-3706 [11am-9pm)]
ANSI/MIL-STD-1815A REFERENCE: 4.1.4 (4), Appendix F
PROBLEM:

Implementation-defined attributes that are not supported by some other implementation introduce a severe
portability problem that is far worse than that of unsupported rep-specs and pragmas: at least with
unsupported rep-specs and pragmas the code will still compile (since the unsupported rep-specs and pragmas

are simply ignored), if not execute. Unsupported implementation-defined attributes, on the other hand, ‘
cannot just be ignored: so compilation fails. Worst of all, there is no way to simulate/stub unsupported
implementation-defined attributes: the code actually has to be modified in order for it to compile.

IMPORTANCE: ESSENTIAL

This revision request fixes a serious portability problem which should not be present in a language designed
from the start to be portable; this portability problem is severe enough that if this revision request (or one
similar to it) is not folded into the language, then implementation-defined attributes should be forbidden
in the next version of the language, regardless of the impact on existing code and compilers.

CURRENT WORKAROUNDS: NONE
POSSIBLE SOLUTIONS:

It should be possible for the user to define attributes. there are several ways this could be done, one of
which is suggested below:

type Some_Type is private;

attribute Some_Type’'Image
(This_Instance_Of_Type : in Some_Type) return String;

The visibility rules for user-defined attributes should be the same as for subprograms: this would allow user-
defined attributes to hide both standard and implementation-defined attributes, if desired. '

4-43
Supplement 1

Ada 9X Revision Request 0613

Note: Not only does this revision request provide a way to fix the portability problem introduced by
implementation-defined attributes, but it also makes the language considerably more symmetrical and much
more supportive of object-oriented programming. For example, instead of having to define a bunch of
hokey attribute-like functions (e.g. Image and Value) for a new type, a programmer would define a set of
actual attributes (e.g. ’Image and 'Value) for the new type. This would make user-defined types
indistinguishable from pre-defined types, a very desirable feature.

COMPATIBILITY:

The proposed solution is upward-compatible. All previously-compiled code will behave identically during
execution except for possible small changes in execution speed.

4-4
Supplement 1

Ada 9X Revision Requests 0263

WHEN A CONSTRAINT ERROR IS TO BE RAISED .
DATE: June 9, 1989
NAME: J. A. Edwards

ADDRESS: General Dynamics

P.O. Box 748 MZ 1746
Fort Worth, Texas 76101

TELEPHONE: (817) 763-2612

ANSI/MIL-STD-1815A REFERENCE: 4.1 #10, 13.7.2

PROBLEM:

A constraint error is to be raised on access of a Null item. It appears that Constraint_error has too many
situations that it can be raised therefore losing clarity as to the error cause. Therefore, Constraint_error
should only be raised on a violation of a constraint provided in a user defined object. Any other situation
gives rise t0 exploring language situations where the violation could have occurred. For some of those
occasions, other exceptions are also associated with the violation. One exception raised for a particular
offense should be sufficient.

IMPORTANCE: IMPORTANT '

Moderate impact for very large scale programs to determine where to handle the exceptions and the "side
effects” for not handling exceptions. The language is so complex that those determinations are not aiways
clear. It causes great maintenance problems to have to put "when others” indications with program IDs to
determine where the problem occurred. For the static cases, constraint errors should be recognized early
in the compilation process. Range checking has excessive overhead for realtime processes and the
developers rely on hardware interrupts for machine processing faults.

CURRENT WORKAROUNDS:

The developer depends on an over-utilization of "unchecked conversions” or the exception handler "when
others” null or set a global ID. The clarity of what occurred is really lost.

POSSIBLE SOLUTIONS:

Restrict constraint errors to the situations where constraints have been declared. Attempt to separate the
meanings of Numeric_error, Program_error, and Constraint_error so that only one possible situation can
be raised. Provide a mechanism so that the user can tell where the error was raised if the exception is
propagated or handled by an interrupt handler. If more than one error is allowed for a given situation,
define the precedence/priority.

4-45
Supplement I

_

Ada 9X Revision Requests 0264

DISCRIMINANTS APPEAR LIKE VARIABLES
DATE: June 9, 1989
NAME: J. A. Edwards

ADDRESS: General Dynamics
P.O. Box 748 MZ 1746
Fort Worth, Texas 76101

TELEPHONE: (817) 763-2612
ANSI/MIL-STD-1815A REFERENCE:: 4.3
PROBLEM:

Discriminants have a major impact on the results of a program unit compilation. They should not be
allowed to masquerade as mere objects, or variables. Each discriminant should stand out vividly in the
source text. Possibly it should be shown as an attribute or characteristic of an object, using
'DISCRIMINANT _NAME as a tag instead of merely writing DISCRIMINANT_NAME:=some expression;
and having an object be elaborated in a surprising way.

IMPORTANCE: IMPORTANT

CURRENT WORKAROUNDS:

Using programming standards to use special naming conventions for "important objects” that can change
the outcome of a program or a structure where the object may appear to be one thing that it really isn’t.

POSSIBLE SOLUTIONS:

1. Special characters for naming discriminants.
2. Treat a discriminated object with an attribute or tag to make it more readily identifiable.
3. Remove anything that might make a discriminant be confused with an array or a function or even

a simple assignment.

4-46
Supplement 1

Ada 9X Revision Requests 0341

NON-STATIC DISCRIMINANTS IN VARIANT RECORD AGGREGATES
DATE: September 14, 1989
NAME: Randall Brukardt

ADDRESS: R.R. Software, Inc.
P.O. Box 1512
Madison WI 53704

TELEPHONE: (608) 244-6436
ANSI/MIL-STD-1815A REFERENCE: 43.1(2)
PROBLEM:

Discriminants that govern variant parts in record aggregates are currently required to be static. This can
make it difficult to construct values for types for which discriminants may have many values. This
requirement is especially onerous when many different discriminant values select the same variant fields.

The Ada standard currently requires a complete record assignment to change a discriminant value. There
are only three ways to construct a completely initialized record at once. First, one could assign from an
existing initialized record, but this leads to the chicken-or-egg problem: how does one get the first such
record? Second, one could use default component values, if they exist and are exactly what is desired;
frequently, however, these conditions do not hold, and adding correct default component values may violate
other aspects of the program design. Thus, in many cases, one is left with the third alternative: usi_g a
record aggregate. However, the current standard allows the declaration of record types for which it is nearly
impossible to construct all reasonable record aggregates, simply because of the number of agg . gates
necessary given the staticness rule. This means that some reasonable data structure choices have to be
rejected simply because the language does not support the easy creation of values for the type.

For example:
type SWITCHING_METHOD_TYPE is (MANUAL, AUTOMATIC),

type PHONES (NUMBER_OF _LINES : NATURAL := 0) is record
case NUMBER_OF_LINES is

when 0 =>
null;
when 1 =>

CALL_WAITING : BOOLEAN;
when 2 .. NATURAL’LAST =>
LINE_SWITCHING_METHOD : SWITCHING_METHGD_TYPE;
end case;
end record;

function MAKE _PHONES (LINES : in NATURAL) return PHONES is
-- Set up a default PHONES record for the indicated number of lines.

begin
case LINES is

4-47
Supplement 1

Ada 9X Revision Requests 0341

when 0 =>
return (NUMBER_OF_LINES => 0);
when 1 =>

return (NUMBER_OF_LINES => 1, CALL_WAITING => FALSE);
when others =>
return (NUMBER_OF_LINES => LINES, -- Currently illegal!
LINE_SWITCHING_METHOD => MANUAL),
end case;
end MAKE_PHONES;

IMPORTANCE: IMPORTANT

Without the change, considerable code space and programmer time will
be wasted writing many aggregates or restructuring types.

CURRENT WORKAROUNDS:

Three workarounds are possible.

If the number of possible values of the discriminant is reasonably manageable, the programmer can create
one aggregate for each possible discriminant value. This can be wasteful of space if several of the
discriminant values share the same fields.

Alternatively, the programmer can create a special enumeration type to be used solely for the
discriminant. For the above example,

type DISC is (ZERO, ONE, MANY);
would work. The new type could be used in place of the intended discriminant. This is wasteful in space,
and obscures the design of the data type: some information is duplicated via storage in more than one place.

Finally, a temporary object can be declared with the appropriate discriminants. Then the individual fields
can be set. This would look like:

function MAKE_PHONES (LINES : in NATURAL) return PHONES is
-- Set up a default PHONES record for the indicated number of lines.
RESULT : PHONES(NUMBER_OF_LINES => LINES);
begin
case LINES is
when 0 =>
null;
when 1 =>
RESULT.CALL_WAITING := FALSE;
when others =>
RESULT.LINE_SWITCHING_METHOD := MANUAL;
end case;
return RESULT;,
end MAKE PHONES;

While this solution works well for this particular example, in general it leads to verbose and un-Ada-like
solutions where many fields are set one at a time.

4-48
Supplement 1

Ada 9X Revision Requests 0341

POSSIBLE SOLUTIONS:

Remove 4.3.1(2).

Ada compilers already must generate code to check that record fields within a variant exist (to implement
4.1.3(8)), so removing this requirement will not add significant work for compiler writers.

It would make sense to add one restriction in place of 4.3.1(2). It should be required that there be no
OTHERS choice in a record aggregate if any discriminant that governs a variant part has a non-static
value specified in that aggregate. This prevents pathological cases in which it is not clear until run time
which fields are indicated by OTHERS.

At run time, the exception CONSTRAINT_ERROR would be raised if the values given to the discriminants
did not match the components given in the record value.

An alternative solution is to allow partial aggregates and partial aggregate assignment. This would make
the last work-around much more workable, but at a major cost in language and compiler complexity.

4-49
Supplement I

Ada 9X Revision Request 0734

INCONSISTENT TREATMENT OF ARRAY CONSTRAINT CHECKING
DATE: July 22, 1989
NAME: Edward Colbert

ADDRESS: Absolute Software Co., Inc.
4593 Orchid Dr.
Los Angeles, CA 90043-3320

TELEPHONE: (213) 293-0783
E-mail: hermix!colbert@rand.cig

ANSI/MIL-STD-1815A REFERENCE: 43.1(3), 5.2(3), 5.2.1, 5.8(6), 6.4.1(6), 6.4.1(7)
PROBLEM:
Given the following declarations:

subtype Short_String_Subtype is String (1 . 5);

subtype String_Size_Subtype is Natural range 0 .. 80;

type Resizeable_String_Type (Size: String_Size_Subtype := 0)is

begin
Value: Vector_Type (1 .. Size)
end record;
X, Y: Natural -- X & Y are set at run-time
Some_Text: String (X .. Y); -- initialized at run-time

A_Resizable_String: Resizeable_String_Type;

According to RM paragraph 4.3.1(3) thc following aggregate will cause a Constraint_Error because the
expression Some_Text does not "belong to the subtype of" A_Resizable_String. Value.

A_Resizable_String := (Size => Some_Text’Length,
Value => Some_Text);

However, if I set the A_Resizable_String Size to the value of
Some_Text’Length by the following assignment statement:

A_Resizable_String := (Size => Soine_Text Length,
Value => (1. Some_Text’Length => "))

then according RM paragraph 5.2(3), I can set A_Resizable_String.Value to the value of Some_Text with
assignments such as the foillowing, because "the assignment involves a subtype conversion as described in
section 5.2.1".

4-50
Supplement I

Ada 9X Revision Request 0734

A_Resizable_String.Value := Some_Text;

As a result of the above rules, assigning an aggregate to a record is NOT equivalent to assigning the
components of the record individually (which may be difficult if there is a need to change a discriminant
as shown in the example above).

The rules for array constraint checking during parameter association in procedure calls [6.4.1(6) and
6.4.1(7)), and the expression in a return statement [5.8(6)] are identical to those for aggregates.

IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS:

The most "elegant” workaround is explicit subtype conversion. For example: "replace” the assignment of the
record aggregate shown above, with the following block.

declare
subtype Value_Subtype is String (1 .. Some_Text’Length);
begin
A_Resizable_String := (Size = => Some_Text’Length,
Value => Value_Subtype’(Some_Text));
end;

However, this technique can be awkward since it may require creation of additional subtypes at run-time
as in the example shown here.

POSSIBLE SOLUTIONS:

Change paragraphs 4.3.1(3), 5.8(6), 6.4.1(6), and 6.4.1(7) to match the wording of paragraph 5.2(3) which
provides for array subtype conversion.

4.51
Supplement |

Ada 9X Revision Requests 0240

UNRESTRICTED COMPONENT ASSOCIATIONS
DATE: August 2, 1989
NAME: James W. McKelvey

ADDRESS: R & D Associates
P.O. Box 5158
Pasadena, CA 91107

TELEPHONE: (818) 397-7246
ANSI/MIL-STD-1815A REFERENCE: 431, 3, 432, 11
PROBLEM:
Component associations are more restrictive than normal assignments.
Example:

X : String(1 .. 5) := "ABCDE"

?ype Test_Type

record

Component : String(1 .. 2);
end record;

Y : Test_Type := Test_Type’(Component => X(4 .. 5));

The last line will raise Constraint_Error because of (4.3.1, 3). However, an assignment like:
Y.Component := X is acceptabie.

A single aggregate assignment often replaces a series of subcomponent assignments. This is desirable
practice primarily because the aggregate must be complete, if the record type changes in some way,
compilation errors will target the aggregate for modification. No such safety valve exists for individual
subcomponent assignments. It is therefore advantageous for an aggregate to be as much like a series of
assignments as possible.

Similar arguments apply to array aggregates.

IMPORTANCE: IMPORTANT

CURRENT WORKAROUNDS:

Replace the aggregate with a series of subcomponent assignments, or, preferably, add explicit subtype
conversions.

POSSIBLE SOLUTIONS:

4.52
Supplement I

Ada 9X Revision Requests 0240

Modify the third sentence in (4.3.1, 3) to read as follows:

A check is made that the value of each subcomponent of the aggregate belongs to the subtype of this
subcomponent, except in the case of a subcomponent that is an array (the association then involves a
subtype conversion as described in section 5.2.1).

This borrows language from (5.2, 3). A similar change would also be made to (4.3.2, 11).

4-53
Supplement I

Ada 9X Revision Request 0571

OTHERS CHOICES IN ARRAY AGGREGATES
DATE: October 21, 1989
NAME: Stephen Baird

ADDRESS: Rational
3320 Scott Blvd.
Santa Clara, CA 95054-3197

TELEPHONE: (408) 496-3600
ANSI/MIL-STD-1815A REFERENCE: 4.3.2(3,6)

PROBLEM:

The restrictions on array aggregates given in 4.3.2(6) should be removed. For example, the following should
> legal:X: String (1..10) := (1 => X, others => ‘y’);

On the other hand, 4.3.2(6)’s definition of a static OTHERS choice should be tightened up slightly, perhaps
by adding the text "and all other choices are compatible with the applicable index constraint® to the end of

the sentence. For example, the following should not be legal:

subtype S is String 1..3);
Y : S := §'(999 => X, others =>'y’);

IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS:
Use named subtypes and qualified expressions.

POSSIBLE SOLUTIONS:

4-54
Supplement I

Ada 9X Revision Request 0310

BLANK PADDING FOR STRING ASSIGNMENTS
DATE: August 30, 1989

NAME: Seymour Jerome Metz
DISCLAIMER:

The views expressed in this request are those of the author, and do not necessarily reflect those of Logicon.

ADDRESS: Home: 4963 Oriskany Drive
Annandale, Virginia 22003

Office: Logicon, Inc.
2100 Washington Boulevard
Arlington, Virginia 22204-5704

TELEPHONE: Home: (703) 256-4764
' Office: (703) 486-3500 Extension 2295

ANSI/MIL-STD-1815A REFERENCE: 43.2(4), 5.2.1(2)
PROBLEM:

Ada does not automatically pad string values with blanks when they are assigned to strings. If the value
is shorter then the variable on the left-hand-side of the assignment operator, CONSTRAINT_ERROR is
raised. Due to language restrictions, blank padding cannot be forced with either default values or an others
choice.

IMPORTANCE: ESSENTIAL

Without some mechanism to handle this, string handling in Ada will continue to be hard to read and error-
prone. For applications requiring string handling, other languages will be used in preference to Ada.

CURRENT WORKAROUNDS:

Unconstrained string types. This can be an extremely expensive solution. Explicit slices. This converts a
simple string concatenation to a "mare’s nest" of unreadable and unmaintainable code.

POSSIBLE SOLUTIONS:

Allow an array aggregate with an unconstrained others choice as the final concatenation of an array
expression, provided that it occurs as the value of an assignment or a component of a qualified expression.

Allow assignment of an array value that is shorter than the variable of the assignment, provided that the
variable was defined with an others choice for its initial value.

As above, but limited to strings.

4-55
Supplement I

Ada 9X Revision Request

0310

Treat string as a separate data type, rather than as an unconstrained array, and define assignment and
equality to include blank padding. Continue to allow concatenation, slicing, etc. on strings, with the same
syntax as for arrays overload assignment and equality as above, but continue to treat strings as arrays.

4-56
Supplement 1

Ada 9X Revision Request 0605

OTHER CLAUSES IN ARRAY AGGREGATES
DATE: October 19, 1989
NAME: James Lee Showalter, Technical Consultant

ADDRESS: Rational
3320 Scott Blvd.
Santa Clara, CA 95054-3197
TELEPHONE: (408) 496-3606 [11am-9pm|
ANSI/MIL-STD-1815A REFERENCE: 43.2(4-8)
PROBLEM:
LRM 4.3.2, paragraphs 4-8 spell out in excruciating detail the cases in which an OTHERS clause is and is
not permitted in an array aggregate. The rationale for these restrictions is not given, and they all seem
arbitrary. Almost nobody correctly understands and/or memorizes the various restrictions.
One small example of the capriciousness of this part of the standard:
* This complies:

type Bar is array (1 .. 10) of Integer;
Boo : Bar := Bar’ (1 => 8,5 => 9, others => 0)

* This doesn’t:!

type Bar is array (1 .. 10) of Integer;
Boo : Bar := (1 => 8,5 => 9, others => 0)

IMPORTANCE: ESSENTIAL
This area of the standard is maddening and need extensive help.
CURRENT WORKAROUNDS:

Never try to use OTHERS clauses an array aggregates. Try to use OTHERS clauses in array aggregates an
hope for the best: when they don’t work scratch your head in wonderment and try some other approach.

POSSIBLE SOLUTIONS:

Clean up this part of the standard so that OTHERS clauses either always work, or fail to work in only the
rarest occasions for the clearest of reasons. At a minimum they should work as well as OTHERS clauses
do for record types.

!can you explain why?

4-57
Supplement 1

Ada 9X Revision Request 0605

COMPATIBILITY:

The proposed solution is upward-compatible. All previously-compiled code will recompile successfully and
will behave identically during execution except for possible small changes in execution speed.

4-58 ,
Supplement 1

Ada 9X Revision Request 0534

AGGREGATES ARE DIFFICULT TO READ WHEN NESTED ‘
IN SUBPROGRAM CALLS AND/OR CONTAINING
NESTED PARENTHESISED EXPRESSIONS

DATE: June 7, 1989
NAME: Stef Van Vlierberghe

ADDRESS: S.A. OFFIS N.V.

Wetenschapstr. 10-Bus 5

1040 Brussels

Belgium
TELEPHONE: +32 2 230.75.70
ANSI/MIL-STD-1815A REFERENCE: 4.3(2)

PROBLEM:

Aggregates are difficult to read when nested in subprogram calls and/or containing nested parenthesised
expressions. A conflict with readability as a design goal.

IMPORTANCE:
This issue is somewhat important. .
CURRENT WORKAROUNDS: None (except for APSE or preprocessors, as always)

POSSIBLE SOLUTIONS:

Readability/writability would be enhanced if aggregates could be written as ’[component_associations { *;
componeni_dssociaviuan}]

Certainly in nested expression that tend to contain a lot of nested parentheses, brackets would be more
visible.

The rule 04.03(04) that imposes named notation for single component aggregates to prevent ambiguity with
the nested expressions is a direct consequence of using parenthesis instead cf brackets.

The only reasonable argument against brackets is probably that they are not available on all keyboards.
Such problems however should not deteriorate the language quality on the majority of the systems that
directly support these characters, and hence replacement characters would be a much better solution. So,
it would be desirable to have the aggregate syntax described using brackets, and allowing parentheses as
replacement character with the restriction of 04.03(04) when parentheses are used.

This would not invalidate any existing Ada source, and allow production of a more readable source using
Adadx.

Portability is less of an issue here. The machines with keyboards without brackets do support brackets in .

4.59
Supplement I

’

T I —

Ada 9X Revision Request 0534
. ascii files, they are just hard to type in. In other words, porting is still no problem (or still the same
probiem).
4-60
Supplement I

Ada 9X Rr-ision Requests 0198

AGGREGATES FOR SINGLE-COMPONENT COMPOSITE TYPES .

DATE: July 25, 1989
NAME: Donald L. Ross
ADDRESS: IIT Research Institute

4600 Forbes Blvd.

Lanham, MD 20706
TELEPHONE: (301) 459-3711
ANSI/MIL-STD-1815A REFERENCE: 4.3(4)
PROBLEM:

Currently, if an array or a record has only one component, it can be given an aggregate assignment by using
named notation only. This seems to be an unnecessary exception to the general rule that named and
positional notations can be used interchangeably.

Examples:

rec := (value);

ary := (value); .
IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS:

Used named notation.

POSSIBLE SOLUTIONS:

4-61
Supplement 1

Ada 9X Revision Requests 0265

SHORT CIRCUIT
DATE: May 15, 1989
NAME: J. A. Edwards

ADDRESS: General Dynamics

P.O. Box 748 MZ 1746
Fort Worth, Texas 76101

TELEPHONE: (817) 763-2612
ANSI/MIL-STD-18.:5A REFERENCE: 44, 45.1, 452
PROBLEM:

Short circuit semantics are unnecessarily prohibitive and add much verbosity/inefficiency in writing Ada code.
The AND THEN and OR ELSE are just not necessary in modern optimizing compilers. Code generation
efficiency is obtained for embedded systems which may have more than one variant module. It is desirable
to short circuit as soon as the compiled result recognizes that the entire path does not need to be evaluated.
This removes the chance that exceptions must be handled for meaningless paths before a branch is taken.
The optimization wording in the LRM seems to allow conditional compilation but not full short-circuiting.
If the results cannot be tested and many of the evaluations are implementation dependent, then the LRM
should specify left-to-right order and be silent on the code generation method.

IMPORTANCE: IMPORTANT
High for embedded systems.
CURRENT WORKAROUNDS:

Not many to overcome the LRM for full short circuit and almost no vendor will support conditional
compilation under the current validation process.

POSSIBLE SOLUTIONS:

1. Add semantics to allow the short circuit to occur as soon as the system can recognize the result
without evaluating the entire boolean expression. Also, allow constant boolean expressions to be
used as conditional compilation (for greater reuse) where no code has to be generated from
unreachable paths. A "warning" should be issued--see write up on levels of errors, reference #0-
028.

2. Remove AND THEN and OR ELSE as unnecessary in the language and add semantics so that the
system can short circuit as soon as the result is recognized.

4-62
Supplement I

Ada 9X Revision Requests 0266

OVERLOADING
DATE: May 15, 1989
NAME: J. A. Edwards

ADDRESS: General Dynamics

P.O. Box 748 MZ 1746

Fort Worth, Texas 76101
TELEPHONE: (817) 763-2612
ANSI/MIL-STD-1815A REFERENCE: 44, 6.1, 6.6, 6.7

PROBLEM:

Currently, testing and maintenance is the predominant activity in the software life cycle. The LRM allows
overloading which tends to obfuscate source code and is not in the spirit of more reliable, easily
maintainable code.

For example, if + and - are already defined operators for a given type then do not allow the user to
overload the same type with an operator that changes its meaning, i.e., - cannot mean +. Force the user
to adopt another symbol, after all Ada supports some 10 other symbols that the user can "overload".

The language should provide semantics to forbid overloading a symbol with another one of the same type.
Overloading should not be allowed for inequality in subpara. 4 of 6.7.

IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS:
Programming standards.

POSSIBLE SOLUTIONS:

< <minor impact>> Add semantics to subpara. 4 of 6.7 to include multiple symbol definitions for the
same type objects, e.g., +,-,*/ cannot be reused for overloading the same numeric operator.

4-63
Supplement 1

Ada 9X Revision Request 0535

NUMERIC OPERATORS FLOOR, CEILING NOT PREDEFINED
DATE: May 16, 1989
NAME: Stef Van Vlierberghe

ADDRESS: S.A. OFFIS N.V.
Wetenschapstr. 10-Bus 5
1040 Brussels
Belgium

TELEPHONE: +32 2 230.75.70
ANSI/MIL-STD-1815A REFERENCE: 44
PROBLEM:

Numeric operators FLOOR, CEILING not predefined.

Why did the language take so good care of the difference between mod and rem (which could also have
been left to the programmer) while the treatment of the (still rather classic) CEILING and FLOOR explicit
conversions was not supported? It would be no extravagant luxury to have a CEILING and FLOOR
conversion in addition to the numeric conversion that rounds indeterministically for INTEGER + 0.5.

As a remark, the language definition itself needs the CEILING function to define the correspondence
between the number of digits and the number of bits of a floating point number (ARM. 03.05.07(06)), but
there one prefers an informal definition: "the integer next above..."

As a more practical example if one wants to calculate the exact number of digits nceded for an exponent
to output a number as ONDDD E xx, then the exponent can be easily expressed as
CEILING(LOG10(NUMBER)). Currently one would be tempted to write INTEGER(LOG10(NUMBER))
= 0, and the exponent is given by INTEGER(0.5) which might be 0 as well as 1.

So, in general one should write a function, for example:

generic
type T_INTEGER is range<>;
type T_FLOAT is digits<>;

function CEILING (F:T_FLOAT) return T_INTEGER;

function CEILING (F:T_FLOAT) return T_INTEGER is
ALMOST_CEILING:constant T_INTEGER:=T_INTEGER (F+0.5);

begin
if F= T_FLOAT (ALMOST_CEILING +1)
then---T_INTEGER(F) + 0.5 has been rounded upward to T_INTEGER (F) + 1
return ALMOST_CEILING + 1;
else return ALMOST_CEILING;
end if;
end;

Every user will probably agree that this job should be done by the compiler suppliers, because they know

4-64
Supplement 1

—

Ada 9X Revision Request 0535

how they round at integer +0.5. But the Ada definition only allows the solution presented above, a generic .
unit to be instantiated by the users. This has several drawbacks, the need to instantiated it whenever it is
needed is one of them, and lack of portability since the feature is not in the standard environment.

IMPORTANCE: IMPORTANT
To avoid pitfall with round-off explained above.

CURRENT WORKAROUNDS: Add to the development work.

POSSIBLE SOLUTIONS:
The obvious solution is adding CEILING and FLOOR declarations to package STANDARD.

The probiem with this approach is that they take any real number as argument, and hence they should be
defined for each possible combination (predefined_integer_type, predefined_real_type). Hence they should
be declared implicitly (as currently done for "*" and "/"):

--function CEILING (RIGHT : universal_real) return universal_integer;
--function FLOOR (RIGHT : universal_real) return universal_integer;

Alternatively, they could be introduced as additional attributes CEILING and FLOOR for all integer types
which are functions that convert a universal_real value to the next higher or next smaller integer.

The problem could be partially solved if the language standard would require either upward or downward
rounding for half integers, such that CEILING and FLOOR are easier to write. But this possibility was .
probably rejected a long time ago.

4-65
Supplement 1

Ada 9X Revision Request 0536

SCALAR OPERATORS MIN, MAX NOT PREDEFINED
DATE: May 16, 1989
NAME: Stef Van Vlierberghe

ADDRESS: S.A. OFFIS N.V.
Wetenschapstr. 10-Bus 5

1040 Brussels

Belgium
TELEPHONE: +32 2 230.75.70
ANSI/MIL-STD-1815A REFERENCE: 44
PROBLEM:
Scalar operators MIN, MAX not predefined.

As a result many programmers end up stuffing their code with local definitions of functions MIN and
MAX.

The key problem is obviously not only to implement these functions, but to find a proper place to declare
them, and this is not so easy.

Functions as compilation units need to be with-ed function by function and cannot overload each other, so
one cannot declare MIN and MAX for each predefined scalar type.

Placing such functions in generic units implies an instantiation at all places of use which is a huge job for
the compiler supplies these functions in STANDARD.

IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS:

Add to development work.

POSSIBLE SOLUTIONS:
The obvious solution is adding MIN and MAX declarations to package STANDARD.

function MIN (LEFT, RIGHT :INTEGER) return INTEGER;
function MAX (LEFT, RIGHT :INTEGER) return INTEGER;

function MIN (LEFT, RIGHT :REAL) return REAL;
function MAX (LEFT, RIGHT :REAL) return REAL;

--function MIN (LEFT, RIGHT : any_fixed_point_type) return same_fixed_point_type;
--function MAX (LEFT, RIGHT : any_fixed_point_type) return same_fixed_point_type;

4-66
Supplement I

Ada 9X Revision Request 0536

In the Ada Europe meeting variable argument lists were mentioned as a possible problem with MIN and
MAX support. This problem could be separated from this issue by remarking that there is an equal need
for variable parameter lists for the "+" operation, or it could be solved by stating that MIN and MAX are
also defined for any one-dimensional array type with scalar component subtype.

For example:

function MIN (RIGHT : STRING) return CHARACTER;
function MAX (RIGHT : STRING) return CHARACTER;

4-67
Supplement 1

Ada 9X Revision Request 0633

LOGICAL OPERATIONS ON ADA INTEGERS
DATE: October 28, 1989
NAME: Henry G. Baker

ADDRESS: Nimble Computer Corporation
16231 Meadow Ridge Way
Encino, CA 91436

TELEPHONE: (818) 501-4956
(818) 986-1360 FAX

ANSI/MIL-STD-1815A REFERENCE: 45
SUMMARY:

Ada does not currently support "logical” operations on integers such as "logical AND", "logical OR", "logical
XOR’, which are commonly and efficiently available in virtually every other low and high level computer
language today. While the lack of these operations is considered essential from the standpoint of "data
abstraction”, this standpoint does not take into account the tremendous inconvenience involved in translating
programs from other languages. We recommend the inclusion of these operations--at least as "second class
citizens"--through their incorporation as a required package in the language having a common, portable
interface.

SPECIFIC REQUIREMENTS/SOLUTION CRITERIA:

The availability of traditional logical operations on integers in virtually all other low-level and high-level
languages bears testament to their usefulness. Almost all Ada implementation offer some sort of machine-
specific provisions for these operations, but due to the lack of a standard, there is no portability among
implementations.

The lack of logical operation in Ada has been justified on the "religious” grounds that Ada integers are the
abstract mathematical notation of integers, and any operations on integers that look at a binary
representation of an integer is considered too representation dependent. However, all modern computers
use the binary representation for integers, and almost all utilize the 2’s complement representation for
negative integers. As a result, the efficient implementation of logical operations is quite feasible on all
modern computers--especially the sort that are being ;utilized for "mission-critical" tasks for which Ada is
required.

The specific recommendation is that logical operations on integers be supported, where the definition of
the result is as if the representation were in 2’s complement notation. Any result which lies outside the
range constraint would cause an exception, unless this were suppressed.

There are two levels of recommendation, minimal and maximal.

Minimal recommendation--the logical functions LOGAND, LOGOR, LOGXOR and LOGNOT be support
for integers. Any of the other 12 two-argument Boolean functions can be constructed from these.

Maximal recommendation-- the function BOOLE(code,operandl, operand2) be supported for integers, and

4-68
Supplement I

Ada 9X Revision Request 0633

the functions LOGAND, LOGOR, LOGXOR and LOGNOT be supported as special cases of BOOLE.
The "code” operand to BOOLE is an integer 0..15 which represents which of the 16 possible Boolean
functions of 2 bits is being requested. This function is supported as a single instruction in many RISC, CISC
and micro-coded processors.

CURRENT WORKAROUNDS:

Even people who agree with the religious argument for not including Boolean functions in Ada sometimes
have to convert programs from other languages which utilize them, and the costs in terms of rewriting,
inefficient code, and non-portability far exceeds the advantages of the religious approach.

Some examples:

(LOGAND 23) =2
(LOGAND -82) =0
(LOGAND -8 16) = 16
(LOGAND -1x) = x
(LOGOR 0 x) = x

LOGNOT(x) is simply "-x-1, although many computers can perform this operation slightly faster as a true
Boolean Operation.

LOGAND(x,y) is very difficult to simulate in general, although some cases can be simulated through other
means--e.g., LOGAND(x,65535)=MOD(x,65536), which is probably slower on most Ada implementations.
The same reasoning applies to LOGOR. LOGOR can be computed from LOGAND by using DeMorgan’s
law: LOGOR(xy) = LOGNOT(LOGNOT(x),LOGNOT(y)) = -LOGAND(-x-1,-y-1)-1.

LOGXOR(xy) is likewise difficult to simulate in general, but it can be simulated if LOGAND is available
through the following identity: LOGXOR(x,y)=(x+y)-2*LOGAND(x,y).

LOGNOT(xx)= -x-1

LOGOR(xy)= LOGNOT(LOGAND(LOGNOT(x),LOGNOT(y))
-LOGAND(-x-1,-y-1)-1

LOGXOR(xy)= (x+y)-2*LOGAND(x,y)

NON-SUPPORT IMPACT:

The current lack of productivity of conversion of programs from other languages into Ada will continue.
The lack of portability of the resulting programs will cause additional loss of productivity during the entire
lifecycle.

POSSIBLE SOLUTIONS:

The only reasonable solution is the generation of the machine code that exists on all modern computers.

One other approach would be to allow the conversion of bit-vectors to and from integers in a portable way.
This approach is taken up in another request entitled "Accessing chunks of bit-vectors and bit-arrays".

DIFFICULTIES TO BE CONSIDERED:

4.69
Supplement I

Ada 9X Revision Request 0633

The only difficulties would be the detection of subrange constraints, which is already being done for normal
arithmetic.

REFERENCES:
Schacht, Eric N. "Ada Programming Techniques, Research, and Experiences on a Fast Control Loop

System". Proc. of Using Ada: ACM SIGAda Int'l Conf., Boston,MA, Dec. 1987, 164-169. Describes
efficiency problems of Ada logical operations on integers, including shift operations.

4-70
Supplement I

Ada 9X Revision Request 0634

SHIFT OPERATIONS ON INTEGERS
DATE: October 28, 1989
NAME: Henry G. Baker

ADDRESS: Nimble Computer Corporation
16231 Meadow Ridge Way
Encino, CA 91436

TELEPHONE: (818) 501-4956
(818) 986-1360 FAX

ANSI/MIL-STD-1815A REFERENCE: 45

SUMMARY:

Ada should be extended with arithmetic binary shift operations, as all modern computers offer some form
of binary shift, and the ubiquity with which these operations appear in virtually every other modern lower-
level or higher-level computer language attests to their usefulness. While shift operations have been
criticized on "religious" grounds by Ada purists, their lack causes a great lack of productivity in the
conversion of programs into Ada, a continuing lack of efficiency, and a lack of portability among
implementations.

SPECIFIC REQUIREMENTS/SOLUTION CRITERIA:
We recommend the addition of the single function ASH(x,y) whose definition is equivalent to:

ASH(xy)= x*(2**), ify>0
x,ify=20
(x-MOD(xs**(-y))A2**(-y)), ify < 0

If y is positive, ASH(x,y) is the traditional "arithmetic left shift" found in most 2’s complement computers.
If y is negative, ASH(x,y) is the traditional "arithmetic right shift" (by -y) found in most 2’s complement
computers.

CURRENT WORKAROUNDS:

Implementing certain operations such as "find-first-bit" (e.g. the length) of an integer can be efficiently
simulated in software by a number of table lookups by considering portions of the integer--e.g. one byte at
a time. However, the speed of these operations depend critically on the ability to shift and extract portions
of the integer quickly--i.e., perform logical operations on integers. Portable implementations of these
operations which are also quite efficient could be better done if shifts were a standardized part of the Ada

language.

The workaround for ASH(x,y) for non-negative y is obvious--use the expression x*(2**y). If compilers are
smart enough to recognize this situation and produce the correct machine instruction, this would be
acceptable. However, for negative y, the equivalent expression is too complicated and too unreadable to
be acceptable.

4-71
Supplement 1

Ada 9X Revision Request 0634

NON-SUPPORT IMPACT:

Difficulty in translating code into Ada from other languages, inefficient code, and lack of portability of
vendor supplied fixes.

POSSIBLE SOLUTIONS:

The only reasonable solution is to have the compiler generate the obvious machine instruction.

One other approach would be to allow the conversion of bit-vestors to and from integers in a portable way.
This approach is taken up in another request entitled "Accessing chunks of bit-vectors and bit-arrays”.

DIFFICULTIES TO BE CONSIDERED:

The definition of ASH9xy) is most efficient for 2’s complement representations. However, producing
efficient code for 1's complement machines is not that difficult, either, because of the following
identity:ASH(x,-n)=LOGNOT(ASH(LOGNOT(x),-n)), for n >0.

REFERENCES:
Schadt, Eric N. "Ada Prcgramming Techniques, Research, and Experiences on a Fast Control Loop System".

Proc. of Using Ada: ACM SIGAda Int'l Conf., Boston,MA, Dec. 1987, 164-169. Describes efficiency
problems of Ada logical operations on integers, including shift operations.

4-72
Supplement I

Ada 9X Revision Request 0635

MULTIPLE ?RECISION INTEGER OPERATIONS

DATE October 28, 1989

NAME: Henry G. Baker

ADDRESS: Nimble Computer Corporation
16231 Meadow Ridge Way
Encino, CA 91436

TELEPHONE: (818) 501-4956
(818) 986-1360 FAX

ANSI/MIL-STD-1815A REFERENCE: 45
SUMMARY:

While it is possible to implement portable multiple-precision integer algorithms using Ada, the resulting
implementations are at usually two or four times slower than they need to be, because Ada does not provide
convenient multiple precision arithmetic functions. This proposal attempts to correct this lack of putting
back operations which are available in most computer assembly languages, but not in most higher-level

languages.
SPECIFIC REQUIREMENTS/SOLUTION CRITERIA:

Integer operations of precision greater than that available on many implementations of Ada is often
required, even in embedded systems. The most obvious example is that of an Ada compiler, which is
required to perform arbitrary precision arithmetic for the implementation of universal_integer, but example
also appear in embedded systems for timers, and for implementing calculations which must be extremely
accurate (e.g., astronomical calculations).

While a portable implementation can be done, it is usually twice as slow as it should be for addition, and
four times as slow as it should be for multiplication, because it cannot take advantage of the hardware
capabilities of almost all modern computers for handling multiple precision arithmetic. We propose a
solution for this problem which will alleviate this inherent inefficiency.

ADD(x,y,low,high) x,y,low,high are the same type (INTEGER,LONG_INTEGER,etc.)
X,y are IN parameters
low, high are OUT parameters
low = MOD(x+y,(TLAST+1) -- the "true" x+y
high- (x+y-low)/(T'LAST+1) -- the "true" x+y

MULTIPLY(x,y,Jlow,high) xy,Jow,high are the same type
x,y are IN parameters
low, high are OUT parameters
low = MOD(x*y,(TLAST+1) -- the "true” x'y
high- (x*y-low)/(TLAST+1) -- the "true" x*y

When using 2's complement arithmetic and TFIRST=-T'LAST-1, it should be possible to open code these
operations.

4-73
Supplement 1

Ada 9X Revision Request 0638

CURRENT WORKAROUNDS:

The workarounds for muitiple precision integer operations are obvious, and have been implemented in many
packages. However, the lack of access to the efficiency of the builtin hardware operations will cause some
to prefer non-portable solutions involving other languages or machine code.

NON-SUPPORT IMPACT:

Inefficiency in running code, lack of portability, or both.

POSSIBLE SOLUTIONS:

There is probably a more elegant solution for no-symmetric ranges (e.g., for unsigned integers), but I will
leave that to the distinguished committee.

DIFFICULTIES TO BE CONSIDERED:

Dealing with other than the operations provided by the hardware will cause some slowdown, but not nearly
as much as going to half precision.

4.74
Supplement 1

Ada 9X Revision Request 0638

AXIOMS TO BE OBEYED BY BUILT-IN OPERATIONS
DATE: October 28, 1989
NAME: Henry G. Baker

ADDRESS: Nimble Computer Corporation
16231 Meadow Ridge Way
Encino, CA 91436

TELEPHONE: (818) 501-4956
(818) 986-1360 FAX

ANSI/MIL-STD-1815A REFERENCE: 45X
SUMMARY:

There are several assumptions built into the Ada language description which should be made explicit. While
our proposal involves making the obvious even more obvious, it is still worth clarifying these issues. In
particular, the following rules should be obeyed by built-in operations:

For all xy, "x/=y" is equivalent to "not(x=y)"

For all x)y, "x<=y" is equivalent to "not(x<y) or (x=y)"
For all x,y, "x>=y" is equivalent to "not(x>y) or (x=y)"
For all x,y, "x=y" is equivalent to "not(x/=y)"

For all xy, "x<y" is equivalent to "not(x>=y)"

For all xy, "x<=y" is equivalent to "not(x>y)"

For all xyy, "x>y" is equivalent to "not(x<=y)"

For all x;y, "x>=y" is equivalent to "not(x<y)"

For all x;y, "x not in y" is equivalent to "not (x in y)"

SPECIFIC REQUIREMENTS/SOLUTION CRITERIA:
The following rules should not be obeyed by the built-in operations:

For all x,y, "x/=y" is equivalent to "not(x=y)"

For all x)y, "x<=y" is equivalent to "not(x<y) or (x=y)"
For all xy, "x>=y" is equivalent to "not(x>y) or (x=y)"
For all x,y, "x=y" is equivalent to "not(x/=y)"

For all xy, "x<y" is equivalent to "not(x>=y)"

For all x)y, "x<=y" is equivalent to "not(x>y)"

For all xy, "x>y" is equivalent to "not(x< =y)"

For all x,y, "x>=y" is equivalent to "not(x<y)"

For all x;y, "x not in y" is equivalent to "not (x in y)"

CURRENT WORKAROUNDS:

Compiler optimization and program verification/validation is greatly hampered if there are no axioms
governing the action of the built-in operations of Ada. While the use of overloading by the programmer
can violate the above axioms, that is an issue that affects a particular program or subsystem. However, if

4-.75
Supplement I

Ada 9X Revision Request 0638

the above axioms cannot be relied upon for all Ada built-in (non-overloaded) operations, then very little
optimization or verification can be performed.

NON-SUPPORT IMPACT: Slow and/or buggy programs.
POSSIBLE SOLUTIONS:

Make the above propositions into axioms.
DIFFICULTIES TO BE CONSIDERED:

Most implementations already adhere to these specifications, and those that don’t, should.

4.76
Supplement I

Ada 9X Revision Request 0766

ADA SHOULD SUPPORT CHECKSUMS IN COMMUNICATION PROTOCOLS '
DATE: June 16, 1989
NAME: Ivar Walseth

ADDRESS: Kijell G. Knutsen A/S
Box 113
4520 Sor-Audnedal
NORWAY

TELEPHONE: +47 43 56205
ANSI/MIL-STD-1815A REFERENCE: 45
PROBLEM:

Many algorithms require bitwise operations on integers (i.e., checksums in communication protocols). Since
such operations are commonly available on most CPUs, Ada should support them.

IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS:

1. Use pragma interface to another language. This is inefficient, and work must be done every time ‘
the software is ported another CPU.

2. Use representation clause and unchecked conversion. This may be unsafe and it is not supported
by all validated compilers.

POSSIBLE SOLUTIONS:

Support the following operators for any integer type (or at least for any unsigned integer type):

function "and" (left, right:int) return int;

function "or" (left, right:int) return int;

function "xor" (left, right:int) return int;

function "not" (operand:int) return int;

function shift-left (operand:int; bits integer) return int;
function shift-right (operand:int; bits integer) return int;

Allow modulo arithmetic by some means. This could be implemented as:

type byte is range O..255;
pragma module_arithmetic (byte);

4.77
Supplement 1

Ada 9X Revision Request 0609

REDEFINITION OF ASSIGNMENT AND EQUALITY OPERATORS

DATE: October 19, 1989
NAME: James Lee Showalter, Technical Consultant
DISCLAIMER:

This Revision Request has been submitted to some amount of peer review by others at Rational, but it is
not an official Rational submission.

ADDRESS: Rational
3320 Scott Blvd.
Santa Clara, CA 95054-3197

TELEPHONE: (408) 496-3606 [11am-9pm]
ANSI/MIL-STD-1815A REFERENCE: 4.5(1-2), 5.2(1), 6.7(4), 7.4.4(3), 7.4.4(3,6,7,9,11)
PROBLEM:

The standard allows operators such as "*" and "+" 10 be redefined by the programmer, both for predefined
types and for new types defined by the programmer. This is very nice, both because it provides the
programmer with a great deal of flexibility and because it supports object-oriented programming techniques
with a symmetrical language definition.

Unfortunately, the current standard balks at allowing redefinition of assignment (":="), equality ("+"), and
inequality ("/=") operators uniformly across all types, and this frustrates and annoys programmers who are
just trying to use the language to do object-oriented programming. (Inequality is especially odd because
it is always obtained implicitly by negation of the equality operator rather than being treated as a separate
operator).

For example, a diligent and well-meaning programmer who has just defined a private type of some kind
might very well wish to define a test for equality for the type and call this test for equality "=" (thereby
overriding a potentially undesirable default test for equality). Unfortunately, unless the programmer makes
the type a limited private type, this is not possible.

Suppose the programmer then does decide to use a limited private type. Now "=" can be defined, but there
is no way for ":=" to be defined, which introduces a whole other set of problems.

IMPORTANCE: ESSENTIAL

This whole area of the standard is a minefield because it is inherently asymmetrical for no apparent reason:
students go nuts trying to remember when they can and cannot do things that should always be possible to
do.

CURRENT WORKAROUNDS:

Write hokey Is_Equal and Is_Not_Equal functions for all but limited private types and hope programmers
will remember to use them instead of the default "=" and "/=" tests (which may be totally inappropriate).

4-.78
Supplement I

Ada 9X Revision Request 0609

Write hokey Assign procedures for limited private types (or use pointers to limited private types to
circumvent the lack of ":=").

POSSIBLE SOLUTIONS:

Clean up this area of the standard so that it acts like a real object-oriented language, with proper
inheritance and overriding of operators. Make it possible to redefine equality, inequality (independent of
equality), and assignment for all types. Make redefinition override the default version of these operations.
Make the only difference between limited private and regular private types be the fact that there are fewer
predefined operators for limited private types.

COMPATIBILITY:
Believe it or not, the solutions proposed above are upward-compatible. All previously-compiled code will

recompile successfully and will behave identically during execution except for possible small changes in
execution speed.

4-79
Supplement 1

Ada 9X Revision Request 0339

PROVIDE SUPPORT FOR CHARACTER COMPARISON
BASED ON THE LOCAL ALPHABET

DATE: March 25, 1989
NAME: Erland Sommarskog (Endorsed by Ada in Sweden)
ADDRESS: Erland Sommarskog

ENEA Data AB

Box 232

S-183 23 T[BY C[" ="A" with dots.)

SWEDEN

TELEPHONE: +46-8-7922500
E-Mail: sommar@enea.se

ANSI/MIL-STD-1815 AREFERENCE: 45.2 if any.
PROBLEM:

Comparison of characters and strings today is based on their ASCII codes. This seldom not very meaningful
for any other language than English. In many languages the rules cannot even is be described by a simple
enumeration rule. For instance in German "A" with dots is sorted under normal "A". The dots only have
significance when there is no other difference. Another case is Spanish, where "CH" is considered as a
separate letter.

IMPORTANCE: IMPORTANT

While it could be argued that is something to have in a package that is not part of the language, I would
like to point to that comparison of strings is a very basic operation.

CURRENT WORKAROUNDS:
Write a package to provide the desired operations.

POSSIBLE SOLUTIONS:

Alternative 1.

Provide a standard package (like Text_io) with the required operations. (It is the author’s feeling
that standard packages should be more loosely coupled to the language, for instance being defined
in a separate document. I know that there are other revision requests on this issue, so I shall not
elaborate this further here.) Beside the comparison operations, the package could also include
predefined rules for major languages.

Alternative 2.

Place the extended comparisons in the predefined STANDARD. The operations for loading and
selecting an alphabet (see above) should probably be in a special package within Standard (or

4.80
Supplement I

Ada 9X Revision Request 0339

separately) if for nothing else for notational reasons. The default behavior would be comparison ’
on ASCII codes.

4.81
Supplement 1

Ada 9X Revision Request 0537

MULTIPLYING OPERATOR "/
DATE: May 16, 1989
NAME: Stef Van Vlierberghe

ADDRESS: S.A. OFFIS N.V.
Wetenschapstr. 10-Bus 5
1040 Brussels
Belgium

TELEPHONE: +32 2 230.75.70
ANSI/MIL-STD-1815A REFERENCE: 455
PROBLEM:

Multiplying operator "/". Isn’t this an incoherent approach to avoiding ambiguity? Crystal-clear operations
like V_FLOAT := 5 are forbidden because implicit conversion from universal integer to a floating point
type is considered dangerous. Of course this would be a dramatic approach for compilers that would not
do the conversior., but that reasoning surely does not apply to Ada. So, one chooses to keep a formal
difference between two things that are semantically very close (5 and 5.0).

Now, for the division operator, there are two very different operations, integer division and floating point
division. Here the language uses a single token, °/ to represent the semantically different operations. Why
didn’t one follow Pascal here, using operator div for integer division and "/ for floating point division?
In the Ada Europe meeting it was mentioned that in Ada (unlike Pascal) integers were not treated as a
subset of reals, but as something different. This is undisputable, but the question is: does support for a
predefined operator:

function "/ (LEFT,RIGHT : INTEGER) return universal_real;

imply that INTEGERSs are a subset of REALs? Or does support for an implicit type conversion from
universal integer to universal_real imply this?

IMPORTANCE: ADMINISTRATIVE
CURRENT WORKAROUNDS: NONE
POSSIBLE SOLUTIONS: Introduce operator div.

4-82
Supplement 1

Ada 9X Revision Request 0572

OPERATORS FOR ALL PREDEFINED INTEGER TYPES,
NOT JUST STANDARD.INTEGER

DATE

October 21, 1989
NAME: Stephen Baird

ADDRESS: Rational
3320 Scott Blvd.
Santa Clara, CA 95054-3197

TELEPHONE: (408) 496-3600
ANSI/MIL-STD-1815A REFERENCE: 4.5.5(7), 4.5.6(5)

PROBLEM:

For an implementation which provides a predefined Long_Integer type, it would be useful if the following
assignment statement were legal:

X : Long_Integer := Long_Integer (Integer’Last) + 37;
Y : Duration := Duration’Delta;

begin
Y : X*Y;

IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS: NONE
POSSIBLE SOLUTIONS:

This, and analogous problems, could be solved if the operations defined on Standard.Integer in 4.5.5(7) and
4.5.6(5) were also defined on every predefined integer type, including Universal_Integer. It is important that
operations on Universal_Integer be provided because otherwise any implementation which provides more
than one predefined integer type would then have to reject the following (which is currently legal)

Y : Duration := 1.0;

begin
Y := 2*Y;
because the call to "*" would be ambiguous.

4-83
Supplement 1

Ada 9X Revision Request 0591

FIXED MULTIPLICATION & DIVISION WITH UNIVERSAL REAL OPERANDS

DATE: October 4, 1989
NAME: Terence J. Froggatt
DISCLAIMER:

The views expressed in this note are those of the author and do
not necessarily represent those of SD-Scion Plc.

ADDRESS: Ada Division, SD-Scion Plc.
Pembroke House, Pembroke Broadway,
Camberley, Surrey, GU15 3XD, UK

TELEPHONE: Home: +44 252 613996
Work: +44 276 686200

ANSI/MIL-STD-1815A REFERENCE: 4.5.5(10)
PROBLEM:

In the present Ada language, a floating point number can be manipulated or divided by a real literal
constant (or any universal real named number) whereas a fixed point number cannot be: the programmer
has to give the literal (or named number) a type. The need for this facility was recognized in one of the
earliest Ada issues, AI-20, for literals, and subsequently in Ai-376 for universal real operands generally.

The reason given for the lack of these literal operations was the uncertainty over the accuracy to which the
constant has to be held at run-time, (see Ada Letters IV-2.68 & V1.6-77), when the language was defined
in 1983. Since then, the problems have been solved, and it has been shown that the Trestriction is
unnecessary.

(In the currently approved forms of AI-20 and AI-376, it is stated that providing this facility requires the
same support from the compiler as would supporting arbitrary 'SMALLs. This is misleading, because only
a simple subset is required, as is explained below.)

IMPORTANCE: IMPORTANT

This is an IMPORTANT change, not simply because it adds a needed facility to the set of fixed point
operations, but because it will provide greater unifoimity amongst real types, and so make the language
closer to its original design intentions.

CURRENT WORKAROUNDS:

The usual workaround for this problem is to type-convert the literal or named number. Unfortunately this
may reduce its accuracy...

PIL: constant := 3.14.......ccvueveevrernnne s
begin

4-84
Supplement I

—

Ada 9X Revision Request 0591

FIXED_VALUE := FIXED_TYPE (FIXED_VALUE * .
FIXED_TYPED(PD);

Alternatively, but only if representation clauses are well-supported, the following rather clumsy code can
be used in the present Ada language, to multiply or divide fixed values by named numbers, without having
to specify any reduction in the named number’s accuracy...

Pl: constant := 3.14........cccovvurcrieneens

type PIL_TYPE is delta PI range 0. 2‘PI

for PI_TYPE’SMALL use PJ;

TYPED_PI: constant PI_TYPE := PI; -- Still as exact as the named number.

begin
FIXED_VALUE := FIXED_TYPE (FIXED_VALUE * TYPED_PI);

POSSIBLE SOLUTIONS:

Remove the restriction. Allow any of the following, where A and B are of possibly differing fixed-point
types, and C is universal real literal or named number...

A := A_TYPE(C*B)
A := A_TYPE(B*C)
A := A_TYPE(B/C)

.. but not A := A_TYPE(C/B); which is a different problem. (This is similar to the existing rules for mixed
ﬁxed and INTEGER operations; INTEGER/fixed is not available)>

To implement these operations, the compiler has simply to multiply or divide the scaling factor associated .
with the conversion of A to B, (obtained from the ratio of their 'BASE’'SMALLs) by the value of C; then

generate exactly the same code that it would have used for A := A_TYPE(B) but using the revised scaling

factor (with the slight complication that the factor could now be negative).

Unlike some of the operations on fixed point numbers which involve the use of scaling factors, the one
required here, namely a fixed-to-fixed conversion, is one of those which can be implemented easily.

At run-time it can be implemented using a multiply by one constant then a divide by another constant:
where the constants are calculated by the compiler so that their ratio is a continued fraction approximation
to the scaling factor. It can also be implemented by one multiply or divide, plus one shift, a test and two
adds, as shown by Paul Hilfinger.

Both his and my methods only need the hardware arithmetic operations that are already need for other
operations on the same types, and constants of those types; and yet the result is the same as if the literal
or named number had been stored with infinite precision.

POSSIBLE SOLUTIONS:

4-85
Supplement I

Ada 9X Revision Request 0680

INTEGER EXPONENTS

DATE August 23, 1989

NAME: Nicholas Baker

ADDRESS: McDonnell Douglas Electronic Systems Company
5301 Bolsa Avenue 28-1
Huntington Beach, California 92647
TELEPHONE: (714) 896-5060
ANSI/MIL-STD-1815A REFERENCE: 4.5.6(4)
PROBLEM:
The behavior of the exponentiation operator is always dependent on the target since the exponent must be
of type standard.integer. It is generally a bad idea to use type standard.integer in programs, so it becomes

necessary to overload exponentiation or use standard.integer.

IMPORTANCE: IMPORTANT
CURRENT WORKAROUNDS:

Use type standard.integer, either declaring variables of that type (forbidden by some style rules), or using
an explicit conversion. Alternatively, overload "**" explicitly.

POSSIBLE SOLUTIONS:

Implicitly overload "*** for floating/integer type combinations. Of course, this tends to overload the symbol
table.

4-86
Supplement 1

—

Ada 9X Revision Request 0401

ACCURACY REQUIRED OF COMPOSITE FIXED-POINT OPERATIONS ‘
DATE: October 4, 1989
NAME: Terence J Froggatt

DISCLAIMER:

The views expressed in this note are those of the author, and do not necessarily represent those of
SD-Scicon plc.

ADDRESS: Ada division, SD-Scicon plc,
Pembroke House, Pembroke Broadway,
Camberley, Surrey, GU15 3XD, UK

TELEPHONE: Home: +44 252 613996.
Work: +44 276 686200,

ANSI/MIL-STD-1815A REFERENCE: 4.5.7, primarily.
PROBLEM:

In formulating the accuracy requirements for real types, the Ada language designers appear to have
overlooked the fact that certain operations on fixed-point types are composite, and so cannot be reasonably
implemented to the required accuracy. .

This should be contrasted with the situation for floating-point exponentiation: where the language designers
recognized the problem and specified the accuracy in terms of a sequence of more primitive multiplications
and divisions. 4.5.7(9).

For example, in the present Ada language it is possible to write SPEED := FLOAT (DIST/TIME); where
SPEED is a floating-point type, and DIST & TIME are fixed. This is in reality 3 operations (not
necessarily performed in this order):

1. A division of DIST by TIME,

2. A scaling operation using some mixture of multiplication, shifting, or division, by a factor which is
a representable approximation to the universal real ratio of the 'BASE’SMALLSs of DIST & TIME,

3. A conversion from fixed (i.e. integer) to float.

Even though there are several potential sources of inaccuracy here, the language requires the same overall
accuracy here that it would require of any single step operation.

It is only because of the weakness of the ACVC tests in this area, and because support for arbitrary
"SMALLSs is not compulsory, that the impracticability of this requirement is not more widely known.

Clearly the required accuracy could be obtained here and in all other difficult cases, by providing a universal

real package in the target machine, providing arbitrary length rational arithmetic, (as was done for the NY
interpreter). However, the language is (otherwise) designed to avoid this need.

I have shown that a finite arithmetic package will always suffice, but it needs a type capable of representing, '

4-87
Supplement 1

Ada 9X Revision Request 0401

exactly, rather more than the product of any 3 fixed (or 2 fixed & 1 floating) types supported by the
machine. The simulation of such a type by software would be very slow, and totally at odds with the
objectives of fixed-point arithmetic.

DETAIL:

The operations which need to be considered, and my estimate of
their difficulty (in the general case), are as follows:

a) Fixed (Fixed); Easy ¢nough.
b) Fixed (Fixed*Fixed); Easy enough.
©) Fixed (Fixed/Fixed); Easy enough
d) Fixed (Integer); Easy enough.
€) Integer (Fixed); Very messy.
3] Integer (Fixed*Fixed); Impractical.
g Integer (Fixed/Fixed); Impractical.
h) Fixed (Float); Unknown.

i) Float (Fixed); Unknown.

i) Float (Fixed*Fixed); Unknown.
k) Float (Fixed/Fixed); Unknown.

Even if the scalings are confined to powers-of-two, to implement some of these operations we will need to
be able to hold the double-precision product of any two fixed types, and to be able to divide such a product
by a single-precision type to get a back to single-precision answer. The implementor will probably choose
what fixed-point base types to offer, according to the difficulty in providing such products for them.

Where the scalings are not confined to powers-of-two, but the scalings of the operands and results are in
commensurate units, as is often the case, the scale factors cancel out in the compiler (giving simpler code
than powers-of-two, where an occasional shift is needed): so these present no problems either. It is the
incommensurate cases which are harder, where the scale factors do not cancel out to a power of two...

Paul Hilfinger has shown that (b) Fixed(Fixed*Fixed), and (c) Fixed(Fixed/Fixed), can be implemented, for
any scales. Each uses one multiplication, one shift, and one division,
using no more than the double-precision product that we already need, plus a few relatively fast instructions.

Case (a) Fixed to Fixed, can be viewed as a degenerate (b) or (c), and case (d) Integer to Fixed, is the
special case of (a): Fixed-delta-1 to Fixed. So there are no problems here.

Case (¢) Fixed to Integer, is much harder: because rounding to the nearest integer is mandated. It might
be just possible to do this using a divide routine doctored to round to the nearest, rather than towards zero,
and using an extra addition to represent one more bit of the scaling constant than can usually be held.

I do not believe that there is a general implementation of (f) Integer(Fixed*Fixed), or (g)
Integer(Fixed/Fixed), that gives the required accuracy for any scale factor, other than by simulating an
arithmetic type not supported by hardware. (Paul Hilfinger has published some algorithms, but these only
work for certain special cases).

To the best of my knowledge, no-one has even attempted the accuracy analysis of the remaining cases
(h,i,j,k); which involve both floating-point and fixed-point with arbitrary scale factors. (There are quite a
lot of different situations to consider).

Despite the "impracticals” and "unknowns” in the above table,

4-88
Supplement 1

Ada 9X Revision Request 0401

note that by far the most useful fixed-point operations, namely (a,b,c), are easy enough to implement for
any scale factors.

IMPORTANCE: ESSENTIAL

The revised standard is unlikely to be accepted, if this revision request is not supported, simply because,
on the evidence that I have seen, the present language cannot sensibly be implemented as specified.

The problem is with some of the less-important fixed-point operators, when used with arbitrary scales. But
because the implementation of arbitrary scales is in itself optional, the effect of this problem is to remove
arbitrary scales from the language compietely.

In these days of floating-point coprocessors, most people who want to use fixed-point need it for some
specific reason (such as communication with physical transducers) where arbitrary scales are important. So
this revision request seeks to ensure that fixed-point arithmetic in Ada 9X justifies its existence.

CURRENT WORKAROUNDS:

In theory ...

The programmer can avoid operations (e,f,g) by declaring a fixed type with a delta of 1.0 (for each integer
base type); and then converting the fixed expression via a fixed-delta-1 type to integer. The workaround
for operations (h,i,j,k) involving float and arbitrary scaled fixed is similar: convert via a fixed type having
a power-of-two scaling: but this is harder to express, since every such operation might need a different
declaration.

Unfortunately, the compiler cannot tell, when processing a fixed point type 'SMALL length clause in one
compilation unit, that the programmer is going to use the workarounds to ensure that only the
implementable operations are called. The compiler generally has to assume that the dubious operations
are going to be used (in some other compilation unit). The language does not permit a compiler to reject
the dubious operations, but it does allow the outright rejection of the length clause.

So many Ada compilers do not implement arbitrary scales at all: even though the most important operations
are easy. Legal but not helpful. Other Ada compilers may try to be helpful by providing arbitrary scales,
by disregarding their accuracy, exploiting the weaknesses of the ACVC. The problem here is that
programmers will have no idea what accuracy they can count on, possibly even for the easy operators.

In practice therefore ...

The workaround most likely to be used by the programmer who wants arbitrary scalings, (either to
communicate with physical transducers, or to obtain the cleaner abstraction offered by range-related
scalings), will be to declare types like FRACTION and LONG_FRACTION, all with ranges of -1.0..+1.0,
and do the scaling by explicit multiplications.

POSSIBLE SOLUTIONS:

If we were designing a low-level language from scratch, I would

propose that it offered just pure fractions (as used in the above workaround), where the programmer does

the scaling. If we were designing a high-level language from scratch, I would propose arbitrary-scaled

fixed-point where the compiler does all the scaling, as (supposedly) available as an option in the present
Ada language (except that, personally, I would not make it optional, and I would use range-related scales

by default).

I have never seen the advantage in offering just power-of-two scalings: from the compiler writer’s viewpoint

4-89
Supplement I

Ada 9X Revision Request 0401

they offer little intellectual simplification relative to arbitrary scales (given that compilers already optimize
multiplications into shifts when they can, and given sensible accuracy requirements), while from the
programmer’s viewpoint they offer little abstractional advance relative to fractions (such as peripheral-related
or range-related scales).

Given the existing Ada language as a starting point, we cannot just drop fixed-point altogether or offer just
pure fractions; but we do have a choice: we can either go backwards by removing arbitrary scales from Ada
9X, offering just the power-of-two scales guaranteed by the existing language, or we can go forwards by
making sure that arbitrary scales are implementable. Since the most important operations can already be
made to work to the required accuracy, I believe we should go forwards, and all that we need for Ada 9X
is a well-defined relaxation of the requirements on the troublesome rarer fixed-point operations.

I am not seeking a relaxation to make the compiler-writer’s life easier: indeed, the exact opposite: I would
like to make sure there is no excuse for not implementing arbitrary scale factors. I would far rather see the
compiler doing the universal real scale factor arithmetic than ask the programmer to do it.

Setting an unrealistic accuracy target is no help to implementors or to users: to be able to write portable
numeric software, we need a well-defined but reachable target for Ada 9X, backed up by ACVC tests. (The
SigAda numerics WG has a similar realistic approach to the accuracy required of its elementary function
package.)

It seems to me that a sensible goal would be to ensure that all of the operations on a fixed-point type with
arbitrary scale can be performed by the same set of hardware primitives that are assumed for a fixed-point
type of the same length but with a power-of-two scaling; (such as the availability of a double-precision
product). There are several ways that this might be achieved ...

1) If it could be demonstrated that (e) and (h,i) were in fact easy, change 4.5.5(11) from
"universal-fixed .. must always be explicitly converted to some NUMERIC type" to read ".. to some
FIXED type", which would eliminate (f,g,j,k). I am sure that most Ada users are unaware that the
results of fixed multiply or divide can be converted directly to integer or float.

2) If it could be demonstrated that (h,i,j,k) are all in fact easy, reword 4.6(7) to only require "nearest"
for float-to-integer; and allow fixed-to-integer to round up or down, (like the half-way cases already
do), thereby simplifying (e,f,g).

3) Assuming that only (a,b,c,d) are easy, we could relax (e,f,g) as in (2), and find some form of words
to relax (h,i,j,k). This could be tricky to formulate in terms of intervals or in terms of equivalent
operations; but the aim should be to allow the operator, the scaling, and the conversion, to be
implemented as separate steps (in the order which gives the best accuracy for the types in question).

4) An alternative approach is to prohibit the difficult operations, possibly all of (e.f,g,h,i,j,k), but only
in those instances where at least one of the fixed types concerned actually has a non-power-of-two
scale. Or, easier but more restrictive: if it has an explicit 'SMALL length clause, whatever the value.
(Although 13.1(10) says that a representation clause cannot change the net effect of the program,
this statement is already known to be false for 'SMALL, which clearly changes the model numbers
of a type.)

Much as [dislike affording a special significance to power-of-two scales, I suspect that (4) would be the
right choice, starting from the existing Ada language, (even if it does lead to some complexity in checking
generic bodies against instantiations), because:

) The operations which remain for arbitrary scales, (a,b,c,d), include the most important ones, (a,b,c),

without which it would be hard to do anything. It is fortunate that these can reasonably be

4-90
Supplement 1

Ada 9X Revision Request 0401

implemented to the current accuracy requirements.

*) Upritke proposals (1,2,3), no relaxation in the availability or accuracy of the operators is being
proposed for power-of-two types. So the only programs affected will be those using arbitrary scales,
(and making rather optimistic assumptions about their accuracy).

*) The existing Ada accuracy model survives. The language restriction is straightforward to explain,
to implement, and to understand. It can be defined now, without further research by myself or by
Paul Hilfinger, into what can and cannot be done.

The ideal solution, of course, would be for someone to prove me wrong, by publishing efficient algorithms
for all of the operations.

4.91
Supplement I

Ada 9X Revision Request 0592

ACCURACY REQUIRED OF COMPOSITE FIXED-POINT OPERATIONS

DATE: October 4, 1989
NAME: Terence J. Froggatt
DISCLAIMER:

The views expressed in this note are those of the author and do not necessarily represent those of SD-
Scion Plc.

ADDRESS: Ada Division, SD-Scion Plc.
Pem